Parasitological risk assessment from wastewater reuse for disposal in soil in developing countries

2012 ◽  
Vol 65 (8) ◽  
pp. 1357-1367 ◽  
Author(s):  
Silvana A. Cutolo ◽  
Roque P. Piveli ◽  
Jéferson G. Santos ◽  
Célia R. Montes ◽  
Gilberto Sundefeld ◽  
...  

The purpose of this work is to analyze the parasitological risks of treated wastewater reuse from a stabilization pond in the city of Piracicaba, in the State of São Paulo (Brazil), and the level of treatment required to protect public health. Samples were taken from raw and treated wastewater in stabilization ponds and submitted to a parasitological, microbiological and physicochemical analysis. The study revealed on treated wastewater the presence of Ascaris sp. and Entamoeba coli with an average density of 1 cysts L−1 and 6 eggs L−1, respectively. For Ascaris, the annual risks of infection due to the accidental ingestion of wastewater irrigation were 7.5 × 10−2 in 208 days and 8.7 × 10−2 in 240 days. For Total Coliforms and Escherichia coli in treated wastewater, the average density was 1.0 × 105 MPN/100 ml and 2.7 × 104 MPN/100 ml respectively, representing 99% and 94% removal efficiency, respectively. For BOD, COD, TS and TSS removal efficiency was 69, 80, 50 and 71%, respectively. The removal efficiency for nitrogen; ammonia nitrogen and total phosphate was 24, 19 and 68%, respectively. The average density of helminths eggs in treated wastewater is higher compared to the density of the limit value of ≤1 egg L−1 and tolerable risk is above the level recommended by the World Health Organization. Multiple barriers are necessary for the reduction of organic matter, chemical contaminants and parasites from treated wastewater. Standards for the sanitary control of treated wastewater to be reused in agricultural irrigation areas should be compiled for developing countries in order to minimize public health risks.

2013 ◽  
Vol 67 (6) ◽  
pp. 1362-1369 ◽  
Author(s):  
Mohamed Osman Awaleh ◽  
Moussa Mahdi Ahmed ◽  
Youssouf Djibril Soubaneh ◽  
Farhan Bouraleh Hoch ◽  
Samatar Mohamed Bouh ◽  
...  

The purpose of this paper is to establish the feasibility of recovering discarded reverse osmosis (RO) membranes in order to reduce the salinity of domestic treated wastewater. This study shows that the reuse of RO membranes is of particular interest for arid countries having naturally high mineralized water such as Djibouti. The pilot desalination unit reduces the electrical conductivity, the turbidity and the total dissolved salt respectively at 75–85, 96.7 and 95.4%. The water produced with this desalination unit contains an average of 254 cfu/100 mL total coliforms and 87 cfu/100 mL fecal coliforms. This effluent meets the World Health Organization standards for treated wastewater reuse for agricultural purposes. The annual cost of the desalination unit was evaluated as US $/m3 0.82, indicating the relatively high cost of this process. Nevertheless, such processes are required to produce an effluent, with a high reuse potential.


2013 ◽  
Vol 67 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Rosa Aiello ◽  
Giuseppe L. Cirelli ◽  
Simona Consoli ◽  
Feliciana Licciardello ◽  
Attilio Toscano

In Italy, the restrictive approach for treated wastewater reuse in agriculture has led to some difficulties in promoting this practice. In order to assess the health risk associated with the use of wastewater in agriculture, an experiment was conducted in an open field near the constructed wetland (CW) system of San Michele di Ganzaria (Eastern Sicily), during the irrigation seasons 2004–2009. In particular the impact on tomato crops of drip and sub-drip irrigation with treated municipal wastewater, as well as effects of wastewater reuse on the irrigation system, main production features, hydrological soil behaviour, and microbial soil and products contamination were investigated. Notwithstanding the fact that globally CW effluents did not match microbiological standards for wastewater reuse of Italian legislation, the median infection risk (function of the recommended tolerable additional disease burden of 10−6 DALY (disability-adjusted life year) loss per person per year) suggested by the 2006 World Health Organization Guidelines for rotavirus, Campylobacter and Cryptosporidium for lettuce irrigation under unrestricted irrigation scenario was achieved.


2021 ◽  
Vol 13 (2) ◽  
pp. 237-254
Author(s):  
Edward R. Jones ◽  
Michelle T. H. van Vliet ◽  
Manzoor Qadir ◽  
Marc F. P. Bierkens

Abstract. Continually improving and affordable wastewater management provides opportunities for both pollution reduction and clean water supply augmentation, while simultaneously promoting sustainable development and supporting the transition to a circular economy. This study aims to provide the first comprehensive and consistent global outlook on the state of domestic and manufacturing wastewater production, collection, treatment and reuse. We use a data-driven approach, collating, cross-examining and standardising country-level wastewater data from online data resources. Where unavailable, data are estimated using multiple linear regression. Country-level wastewater data are subsequently downscaled and validated at 5 arcmin (∼10 km) resolution. This study estimates global wastewater production at 359.4×109 m3 yr−1, of which 63 % (225.6×109 m3 yr−1) is collected and 52 % (188.1×109 m3 yr−1) is treated. By extension, we estimate that 48 % of global wastewater production is released to the environment untreated, which is substantially lower than previous estimates of ∼80 %. An estimated 40.7×109 m3 yr−1 of treated wastewater is intentionally reused. Substantial differences in per capita wastewater production, collection and treatment are observed across different geographic regions and by level of economic development. For example, just over 16 % of the global population in high-income countries produces 41 % of global wastewater. Treated-wastewater reuse is particularly substantial in the Middle East and North Africa (15 %) and western Europe (16 %), while comprising just 5.8 % and 5.7 % of the global population, respectively. Our database serves as a reference for understanding the global wastewater status and for identifying hotspots where untreated wastewater is released to the environment, which are found particularly in South and Southeast Asia. Importantly, our results also serve as a baseline for evaluating progress towards many policy goals that are both directly and indirectly connected to wastewater management. Our spatially explicit results available at 5 arcmin resolution are well suited for supporting more detailed hydrological analyses such as water quality modelling and large-scale water resource assessments and can be accessed at https://doi.org/10.1594/PANGAEA.918731 (Jones et al., 2020).


2017 ◽  
Vol 76 (3) ◽  
pp. 633-641 ◽  
Author(s):  
Erwan Carré ◽  
Jean Pérot ◽  
Vincent Jauzein ◽  
Liming Lin ◽  
Miguel Lopez-Ferber

The aim of this study is to investigate the potential of ultraviolet/visible (UV/Vis) spectrometry as a complementary method for routine monitoring of reclaimed water production. Robustness of the models and compliance of their sensitivity with current quality limits are investigated. The following indicators are studied: total suspended solids (TSS), turbidity, chemical oxygen demand (COD) and nitrate. Partial least squares regression (PLSR) is used to find linear correlations between absorbances and indicators of interest. Artificial samples are made by simulating a sludge leak on the wastewater treatment plant and added to the original dataset, then divided into calibration and prediction datasets. The models are built on the calibration set, and then tested on the prediction set. The best models are developed with: PLSR for COD (Rpred2 = 0.80), TSS (Rpred2 = 0.86) and turbidity (Rpred2 = 0.96), and with a simple linear regression from absorbance at 208 nm (Rpred2 = 0.95) for nitrate concentration. The input of artificial data significantly enhances the robustness of the models. The sensitivity of the UV/Vis spectrometry monitoring system developed is compatible with quality requirements of reclaimed water production processes.


2019 ◽  
Vol 79 (4) ◽  
pp. 656-667 ◽  
Author(s):  
Ana María Leiva ◽  
Adrián Albarrán ◽  
Daniela López ◽  
Gladys Vidal

Abstract The aim of this study was to evaluate the phytotoxicity of wastewater treated with horizontal subsurface flow (HSSF) constructed wetlands (CWs) and activated sludge (AS) system using disinfection treatment such chlorination and ultraviolet (UV) system. To assess the impact of the reuse of different effluents (HSSF-Cl, HSSF-UV, AS-Cl and AS-UV), bioassays using seeds of Raphanus sativus (R. sativus) and Triticum aestivum (T. aestivum), were performed on both Petri dishes and soil. Different treated wastewater concentrations were varied (6.25%, 12.5%, 25%, 50% and 100%) and the percentage of germination inhibition (PGI), percentage of epicotyl elongation (PEE) and germination index (GI) were determined. Positive effects (PGI and PEE <0% and GI >80%) of HSSF-Cl, HSSF-UV, AS-Cl and AS-UV effluents on germination and epicotyl elongation of R. sativus and T. aestivum were observed in Petri dishes bioassays. However, toxic effects of HSSF-Cl, HSSF-UV and AS-Cl on seeds germination and epicotyl elongation of both plant species were detected in soil samples (PGI and PEE >0% and GI <80%). Only R. sativus seeds to be irrigated with AS-UV achieved GI values above 86% for all concentrations evaluated. These results indicated that AS-UV effluent had a positive effect on seeds germination and can be recommended for treated wastewater reuse in agricultural irrigation.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Fred Ssempijja ◽  
Keneth Iceland Kasozi ◽  
Ejike Daniel Eze ◽  
Andrew Tamale ◽  
Sylvia Anurika Ewuzie ◽  
...  

Background. Community consumption of herbal plants in developing countries is a common practice, however, scarcity of information on their physiochemical composition is a major public health concern. In Uganda, Vernonia amygdalina is of interest in rural communities due to its therapeutical action on both bacterial and protozoal parasites, however no studies have been conducted to assess the heavy metal concentrations in traditional plants used in alternative medicine. The aim of the study was to establish concentrations of heavy metals in Vernonia amygdalina, model the estimated daily intake (EDI), and assess both the non-cancer-related health risk using the target hazard quotient (THQ), and the risk related to cancer through the incremental lifetime cancer risk (ILCR) for the Ugandan population. Methods. Leaves of Vernonia amygdalina were collected from 20 georeferenced villages and processed into powder in the laboratory using standard methods. These were then analyzed in the laboratory using an atomic absorption spectrometer for lead (Pb), chromium (Cr), copper (Cu), zinc (Zn), cobalt (Co), iron (Fe), cadmium (Cd), and nickel (Ni). Concentrations were compared against the World Health Organization (WHO) limits. The EDI, THQ, and ILCR were modelled and significance was measured at 95% confidence. Results. The study showed that mean ± SEM concentrations of heavy metals were highest in the order of Cr, 121.8 ± 4.291 ppm > Ni, 84.09 ± 2.725 ppm > Zn, 53.87 ± 2.277 ppm > Pb, 40.61 ± 3.891 ppm > Cu, 28.75 ± 2.202 ppm > Fe, 14.15 ± 0.7271 ppm > Co, 7.923 ± 0.7674 ppm > Cd, 0.1163 ± 0.005714 ppm. Concentrations of Pb, Cr, Zn, Co, and Ni were significantly higher than the WHO limits. The EDI was significantly higher in children than in adults, demonstrating an increased risk of toxicity in children. The THQ and ILCR were over 1000 times higher in all Ugandans, demonstrating the undesirable health risks following oral consumption of Vernonia amygdalina due to very high Cr and Ni toxicities, respectively. Conclusion. Consumption of raw Vernonia amygdalina was associated with a high carcinogenic risk, demonstrating a need to enact policies to promote physiochemical screening of herbal medicines used in developing countries against toxic compounds.


Author(s):  
J.R. Adewumi ◽  
A.A. Ilemobade ◽  
J.E. van Zyl

Wastewater reuse is increasingly becoming an important component of water resources management in many countries. Planning of a sustainable wastewater reuse project involves multi-criteria that incorporate technical, economic, environmental and social attributes. These attributes of sustainability is the framework upon which the decision support tool presented in this paper is developed. The developed tool employs a user friendly environment that guides the decision makers in assessing the feasibility of implementing wastewater reuse. The input data into the tool are easily obtainable while the output is comprehensive enough for a feasibility assessment of treated wastewater reuse. The output is expressed in terms of effluent quality, costs, quantitative treatment scores and perception evaluation. Testing of the developed multi-criteria decision support tool using Parow wastewater treatment works in Cape Town showed the tool to be versatile and capable of providing a good assessment of both qualitative and quantitative criteria in the selection of treatment trains to meet various non-potable reuses. The perception module provided a quick assessment of potential user’s concerns on reuse and service providers’ capacity.


Sign in / Sign up

Export Citation Format

Share Document