Application of a simulated annealing optimization to a physically based erosion model

2012 ◽  
Vol 66 (10) ◽  
pp. 2099-2108 ◽  
Author(s):  
C. A. G. Santos ◽  
P. K. M. M. Freire ◽  
P. M. Arruda

A major risk concerning the calibration of physically based erosion models has been partly attributable to the lack of robust optimization tools. This paper presents the essential concepts and application to optimize the erosion parameters of an erosion model using data collected in an experimental basin, with a global optimization method known as simulated annealing (SA) which is suitable for solving optimization problems of large scales. The physically based erosion model that was chosen to be optimized here is the Watershed Erosion Simulation Program (WESP), which was developed for small basins to generate the hydrograph and the respective sedigraph. The field data were collected in an experimental basin located in a semiarid region of Brazil. On the basis of these results, the following erosion parameters were optimized: the soil moisture-tension parameter (Ns) that depends also on the initial moisture content, the channel erosion parameter (a), the soil detachability factor (KR), and the sediment entrainment parameter by rainfall impact (KI), whose values could serve as initial estimates for semiarid regions within northeastern Brazil.

2009 ◽  
Vol 20 (04) ◽  
pp. 539-556 ◽  
Author(s):  
CHIAMING WANG ◽  
JEFFREY D. HYMAN ◽  
ALLON PERCUS ◽  
RUSSEL CAFLISCH

We explore the potential of parallel tempering as a combinatorial optimization method, applying it to the traveling salesman problem. We compare simulation results of parallel tempering with a benchmark implementation of simulated annealing, and study how different choices of parameters affect the relative performance of the two methods. We find that a straightforward implementation of parallel tempering can outperform simulated annealing in several crucial respects. When parameters are chosen appropriately, both methods yield close approximation to the actual minimum distance for an instance with 200 nodes. However, parallel tempering yields more consistently accurate results when a series of independent simulations are performed. Our results suggest that parallel tempering might offer a simple but powerful alternative to simulated annealing for combinatorial optimization problems.


2010 ◽  
Vol 446 ◽  
pp. 101-110 ◽  
Author(s):  
W. El Alem ◽  
A. El Hami ◽  
Rachid Ellaia

In structural design optimization, numerical techniques are increasingly used. In typical structural optimization problems there may be many locally minimum configurations. For that reason, the application of a global method, which may escape from the locally minimum points, remain essential. In this paper, a new hybrid simulated annealing algorithm for global optimization with constraints is proposed. We have developed a new algorithm called Adaptive Simulated Annealing algorithm (ASA); ASA is a series of modifications done to the Basic Simulated Annealing algorithm ( BSA) that gives the region containing the global solution of an objective function. In addition, the stochastic method Simultaneous Perturbation Stochastic Approximation (SPSA), for solving unconstrained optimization problems, is used to refine the solution. We also propose Penalty SPSA (PSPSA) for solving constrained optimization problems. The constraints are handled using exterior point penalty functions. The proposed method is applicable for any problem where the topology of the structure is not fixed, it is simple and capable of handling problems subject to any number of nonlinear constraints. Extensive tests on the ASA as a global optimization method are presented, its performance as a viable optimization method is demonstrated by applying it first to a series of benchmark functions with 2 - 30 dimensions and then it is used in structural design to demonstrate its applicability and efficiency. It is found that the best results are obtained by ASA compared to those provided by the commercial software ANSYS.


Author(s):  
Celso Santos ◽  
Luiz Pinto ◽  
Paula De Macedo Machado Freire ◽  
Sudhanshu Mishra

Application of a particle swarm optimization to a physically-based erosion model The difficulties involved in calibration of physically based erosion models have been partly attributable to the lack of robust optimization tools. This paper presents the essential concepts and application to optimize channel and plane parameters in an erosion model, with a global optimization method known as Repulsive Particle Swarm (RPS), a variant of Particle Swarm Optimization (PSO) method. The physically-based erosion model that which was chosen is called WESP (watershed erosion simulation program). The optimization technique was tested with the field data collected in an experimental watershed located in a semi-arid region of Brazil. On the basis of these results, the recommended erosion parameter values for a semi-arid region are given, which could serve as an initial estimate for other similar areas.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 494
Author(s):  
Ekaterina Andriushchenko ◽  
Ants Kallaste ◽  
Anouar Belahcen ◽  
Toomas Vaimann ◽  
Anton Rassõlkin ◽  
...  

In recent decades, the genetic algorithm (GA) has been extensively used in the design optimization of electromagnetic devices. Despite the great merits possessed by the GA, its processing procedure is highly time-consuming. On the contrary, the widely applied Taguchi optimization method is faster with comparable effectiveness in certain optimization problems. This study explores the abilities of both methods within the optimization of a permanent magnet coupling, where the optimization objectives are the minimization of coupling volume and maximization of transmitted torque. The optimal geometry of the coupling and the obtained characteristics achieved by both methods are nearly identical. The magnetic torque density is enhanced by more than 20%, while the volume is reduced by 17%. Yet, the Taguchi method is found to be more time-efficient and effective within the considered optimization problem. Thanks to the additive manufacturing techniques, the initial design and the sophisticated geometry of the Taguchi optimal designs are precisely fabricated. The performances of the coupling designs are validated using an experimental setup.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1092
Author(s):  
Qing Duan ◽  
Lu Wang ◽  
Hongwei Kang ◽  
Yong Shen ◽  
Xingping Sun ◽  
...  

Swarm-based algorithm can successfully avoid the local optimal constraints, thus achieving a smooth balance between exploration and exploitation. Salp swarm algorithm(SSA), as a swarm-based algorithm on account of the predation behavior of the salp, can solve complex daily life optimization problems in nature. SSA also has the problems of local stagnation and slow convergence rate. This paper introduces an improved salp swarm algorithm, which improve the SSA by using the chaotic sequence initialization strategy and symmetric adaptive population division. Moreover, a simulated annealing mechanism based on symmetric perturbation is introduced to enhance the local jumping ability of the algorithm. The improved algorithm is referred to SASSA. The CEC standard benchmark functions are used to evaluate the efficiency of the SASSA and the results demonstrate that the SASSA has better global search capability. SASSA is also applied to solve engineering optimization problems. The experimental results demonstrate that the exploratory and exploitative proclivities of the proposed algorithm and its convergence patterns are vividly improved.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Ágota Bányai ◽  
Tamás Bányai ◽  
Béla Illés

The globalization of economy and market led to increased networking in the field of manufacturing and services. These manufacturing and service processes including supply chain became more and more complex. The supply chain includes in many cases consignment stores. The design and operation of these complex supply chain processes can be described as NP-hard optimization problems. These problems can be solved using sophisticated models and methods based on metaheuristic algorithms. This research proposes an integrated supply model based on consignment stores. After a careful literature review, this paper introduces a mathematical model to formulate the problem of consignment-store-based supply chain optimization. The integrated model includes facility location and assignment problems to be solved. Next, an enhanced black hole algorithm dealing with multiobjective supply chain model is presented. The sensitivity analysis of the heuristic black hole optimization method is also described to check the efficiency of new operators to increase the convergence of the algorithm. Numerical results with different datasets demonstrate how the proposed model supports the efficiency, flexibility, and reliability of the consignment-store-based supply chain.


2013 ◽  
Vol 700 ◽  
pp. 164-169
Author(s):  
Kai Song ◽  
Chao Wang ◽  
Tao Chen ◽  
Ze Zhou

This paper aims at cover body dent resistance optimization problems, developed a whole process method using the finite element simulation method and the corresponding engineering experience to solve the dent resistance problem. Use of Tcl/Tk language to develop the script for fast simulation model consider material nonlinearity and contact nonlinearity, Use Abaqus software to calculate the results, and then customized to optimize use of simplified script parameters on changes in the working conditions of the structure will be optimized. The results show that this set of process optimization method to solve the variable conditions dent resistance is quickly, efficiently and accurately.


2013 ◽  
Vol 756-759 ◽  
pp. 3466-3470
Author(s):  
Xu Min Song ◽  
Qi Lin

The trajcetory plan problem of spece reandezvous mission was studied in this paper using nolinear optimization method. The optimization model was built based on the Hills equations. And by analysis property of the design variables, a transform was put forward , which eliminated the equation and nonlinear constraints as well as decreaseing the problem dimensions. The optimization problem was solved using Adaptive Simulated Annealing (ASA) method, and the rendezvous trajectory was designed.The method was validated by simulation results.


Author(s):  
T. E. Potter ◽  
K. D. Willmert ◽  
M. Sathyamoorthy

Abstract Mechanism path generation problems which use link deformations to improve the design lead to optimization problems involving a nonlinear sum-of-squares objective function subjected to a set of linear and nonlinear constraints. Inclusion of the deformation analysis causes the objective function evaluation to be computationally expensive. An optimization method is presented which requires relatively few objective function evaluations. The algorithm, based on the Gauss method for unconstrained problems, is developed as an extension of the Gauss constrained technique for linear constraints and revises the Gauss nonlinearly constrained method for quadratic constraints. The derivation of the algorithm, using a Lagrange multiplier approach, is based on the Kuhn-Tucker conditions so that when the iteration process terminates, these conditions are automatically satisfied. Although the technique was developed for mechanism problems, it is applicable to any optimization problem having the form of a sum of squares objective function subjected to nonlinear constraints.


Author(s):  
Giridhar Reddy ◽  
Jonathan Cagan

Abstract A method for the design of truss structures which encourages lateral exploration, pushes away from violated spaces, models design intentions, and produces solutions with a wide variety of characteristics is introduced. An improved shape annealing algorithm for truss topology generation and optimization, based on the techniques of shape grammars and simulated annealing, implements the method. The algorithm features a shape grammar to model design intentions, an ability to incorporate geometric constraints to avoid obstacles, and a shape optimization method using only simulated annealing with more consistent convergence characteristics; no traditional gradient-based techniques are employed. The improved algorithm is illustrated on various structural examples generating a variety of solutions based on a simple grammar.


Sign in / Sign up

Export Citation Format

Share Document