Effect of co-existing copper and calcium on the removal of As(V) by reused aluminum oxides

2013 ◽  
Vol 67 (1) ◽  
pp. 187-192
Author(s):  
J. K. Yang ◽  
Y. J. Park ◽  
K. H. Kim ◽  
H. Y. Lee ◽  
K. C. Min ◽  
...  

Among the various heavy metals, arsenic is frequently found in abandoned mine drainage and the environmental fate of arsenic in real aqueous solutions can be highly dependent on the presence of co-existing ions. In this study, removal of arsenate through adsorption on the reused aluminum oxide or through precipitation was investigated in a single and in a binary system as a function of pH and concentration. Different removal behaviors of arsenate were observed in the presence of different cations as well as a variation of the molar ratios of arsenate to cations. Co-operative effects on arsenate removal by precipitation in solution occurred with an increase of copper concentration, while a decrease of arsenate removal resulted in increasing calcium concentration. It was observed that the arsenate removal in the presence of calcium would be highly dependent on the molar ratios of both elements.

Author(s):  
Elias Costa de Souza ◽  
Alexandre Santos Pimenta ◽  
Alfredo José Ferreira da Silva ◽  
Paula Fabiane Pinheiro do Nascimento ◽  
Joshua O. Ighalo

2021 ◽  
Vol 11 (14) ◽  
pp. 6592
Author(s):  
Ana Moldovan ◽  
Maria-Alexandra Hoaghia ◽  
Anamaria Iulia Török ◽  
Marius Roman ◽  
Ionut Cornel Mirea ◽  
...  

This study aims to investigate the quality and vulnerability of surface water (Aries River catchment) in order to identify the impact of past mining activities. For this purpose, the pollution and water quality indices, Piper and Durov plots, as well vulnerability modeling maps were used. The obtained results indicate that the water samples were contaminated with As, Fe, Mn, Pb and have relatively high concentrations of SO42−, HCO3−, TDS, Ca, K, Mg and high values for the electrical conductivity. Possible sources of the high content of chemicals could be the natural processes or the inputs of the mine drainage. Generally, according to the pollution indices, which were correlated to high concentrations of heavy metals, especially with Pb, Fe and Mn, the water samples were characterized by heavy metals pollution. The water quality index classified the studied water samples into five different classes of quality, namely: unsuitable for drinking, poor, medium, good and excellent quality. Similarly, medium, high and very high vulnerability classes were observed. The Durov and Piper plots classified the waters into Mg-HCO3− and Ca-Cl− types. The past and present mining activities clearly change the water chemistry and alter the quality of the Aries River, with the water requiring specific treatments before use.


2021 ◽  
Vol 97 ◽  
pp. 460-465
Author(s):  
M.S. Ahmed ◽  
T.M. Zewail ◽  
E-S.Z. El-Ashtoukhy ◽  
H.A. Farag ◽  
I.H. El Azab ◽  
...  

2019 ◽  
Vol 215 ◽  
pp. 1233-1245 ◽  
Author(s):  
Ali Maleki ◽  
Zoleikha Hajizadeh ◽  
Vajiheh Sharifi ◽  
Zeynab Emdadi

The Analyst ◽  
2015 ◽  
Vol 140 (15) ◽  
pp. 5184-5189 ◽  
Author(s):  
Rudy J. Wojtecki ◽  
Alexander Y. Yuen ◽  
Thomas G. Zimmerman ◽  
Gavin O. Jones ◽  
Hans W. Horn ◽  
...  

The detection of trace amounts (<10 ppb) of heavy metals in aqueous solutions is described using hexahydrotriazines as a chemical indicator and a low cost fluorimeter-based detection system.


2012 ◽  
Vol 610-613 ◽  
pp. 3252-3256
Author(s):  
Mei Qin Chen ◽  
Feng Ji Wu

Acid mine drainage (AMD) has properties of extreme acidification, quantities of sulfate and elevated levels of soluble heavy metals. It was a widespread environmental problem that caused adverse effects to the qualities of ground water and surface water. In the past decades, most of investigations were focused on the heavy metals as their toxicities for human and animals. As another main constitution of AMD, sulfate ion is nontoxic, yet high concentration of sulfate ion can cause many problems such as soil acidification, metal corrosion and health problems. More attention should be paid on the sulfate ion when people focus on the AMD. In the paper, sulfate removal mechanisms include adsorption, precipitation, co-precipitation and biological reduction were analyzed and summarized. Meanwhile, the remediation technologies, especially the applications of them in China were also presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document