Nanofiltration process of glyphosate simulated wastewater

2012 ◽  
Vol 65 (5) ◽  
pp. 816-822 ◽  
Author(s):  
Z. Y. Liu ◽  
M. Xie ◽  
F. Ni ◽  
Y. H. Xu

Nanofiltration separation of glyphosate simulated wastewater was investigated using a DK membrane. The effects of operating parameters and the addition of impurities on membrane performance were studied in detail. It was found that at 20 °C, with a glyphosate concentration of 500 mg/L and pH of 2.96, the glyphosate retention rate and the membrane permeate flux increased slightly with increasing transmembrane pressure. With an increase in operating temperature, the permeate flux increased linearly while the retention rate decreased. The permeate flux and glyphosate retention rate decreased with increasing feed concentration. Within the pH range of 3–5, the glyphosate retention rate decreases with increasing pH and reaches a minimum at the isoelectric point of the membrane, while the permeate flux reaches a maximum level at this point. In the pH range of 5–11, with the increases of pH, the glyphosate retention rate increases and the permeate flux decreases. Glyphosate retention decreases slightly with increasing NaCl and phosphite concentrations. This can be explained in terms of the shielding phenomenon.

2014 ◽  
Vol 68 (5) ◽  
Author(s):  
Azry Borhan ◽  
Muhammad Muhibbudin Mat Johari

Monoethanolamine (MEA) has been vastly used for the removal of carbon dioxide (CO2) in natural gas processing plant. However, during the absorption-desorption process and maintenance activities, a small amount of amine get carries over and discharged into the effluent wastewater stream. Due to its high Chemical Oxygen Demand (COD) and require large volume of water for dilution, therefore treatment of MEA contaminated wastewater is a major concern in most amine sweetening plants. In this research, MEA wastewater generated from PETRONAS Fertilizer Kedah Sdn. Bhd (PFK) was treated via AFC99 tubular thin film composite polyamide Reverse Osmosis (RO) membrane. The effect of operating parameter (transmembrane pressure (TMP), feed concentration and pH) towards permeate flux and MEA rejection were studied to obtain the optimum operating conditions. Experimental results showed that AFC99 membrane is able to reject MEA up to 98% when operated at TMP of 20 bars, feed concentration of 300 ppm and pH of 4. This work shows that the RO membrane was feasible and desirable to be used for removal of MEA contaminants from wastewater. Besides, the treated water fulfills the watering standards.


2016 ◽  
pp. 231-240
Author(s):  
Nemanja Milovic ◽  
Aleksandar Jokic ◽  
Natasa Lukic ◽  
Jovana Grahovac ◽  
Jelena Dodic ◽  
...  

The objective of this work was to estimate the effects of the operating parameters on the baker's yeast microfiltration through multichannel ceramic membrane. The selected parameters were transmembrane pressure, suspension feed flow, and initial suspension concentration. In order to investigate the influence and interaction effects of these parameters on the microfiltration operation, two responses have been chosen: average permeate flux and flux decline. The Box-Behnken experimental design and response surface methodology was used for result processing and process optimization. According to the obtained results, the most important parameter influencing permeate flux during microfiltration is the initial suspension concentration. The maximum average flux value was achieved at an initial concentration of 0.1 g/L, pressure around 1.25 bars and a flow rate at 16 L/h.


Author(s):  
Nina Zhou ◽  
A. G. Agwu Nnanna

The performance of cross flow hollow fiber ultrafiltration (UF) membrane with molecular weight cut off (MWCO) 100 kDaltons was studied in order to effectively remove suspended solids in wastewater. Experiments were carried out to investigate the influence of the several factors such as cross flow velocity, transmembrane pressure (TMP), water temperature, and concentration of suspended solids on the membrane performance. Several cleaning methods were applied to remove the fouling. The experimental results showed that increasing TMP, temperature and cross flow velocity all resulted in increasing permeate flux. It is observed that high TMP aggravated the fouling while high cross flow velocity alleviated the fouling. High concentrations of suspended solids led to the reduction of permeate flux. It is also found that both combination of chemical, back- and forward-washing as well as soaking cleaning methods effectively removed fouling and achieved high flux recovery. The suspended solids were effectively removed by our UF system, and the water quality is significantly improved after ultrafiltration.


2014 ◽  
Vol 70 (2) ◽  
Author(s):  
D. Novin ◽  
K. F. MD Yunos

The effect of pH, ionic strength and feed concentration on performance of ultrafiltration (UF) to fractionate Catfish protein hydrolysate (CFPH) through 5kDa regenerated cellulose (RC) membrane was studied. The highest and lowest permeate flux belonged respectively to pH 9 and isoelectric point (IEP) with flux reduction of 5.75 L/m2.h at pH 9 and 10.98 L/m2.h at pH isoelectric through operating time. Further, by adding the salt, the highest permeate flux and transmission obtained at highest ionic strength of 0.15 M NaCl with 52.96% of transmission (in average). Then, the transmission reached to 54.18% by increasing feed concentration up to 1.5 mg/ml. 


2016 ◽  
Vol 22 (8) ◽  
pp. 677-687 ◽  
Author(s):  
Szilvia Banvolgyi ◽  
K Savaş Bahçeci ◽  
Gyula Vatai ◽  
Sandor Bekassy ◽  
Erika Bekassy-Molnar

The present work studies the use of nanofiltration for the production of red wine concentrate with low alcohol content. Factorial design was applied to measure the influences of transmembrane pressure (10–20 bar) and temperature (20–40 ℃) on the retention of valuable components such as anthocyanins and resveratrol, and on the nanofiltration membrane performance. The highest retention of anthocyanin and resveratrol was achieved at low temperature (20 ℃), while the high transmembrane pressure (20 bar) was found to increase the permeate flux considerably. The experiments demonstrated that nanofiltration appears as a valid technique for the production of low alcohol content red wine concentrate. Reduction of volume by a factor of 4, leads to 2.5–3 times more anthocyanins and resveratrol in the wine concentrates. The final new wine products – obtained by using various forms of reconstitution of the concentrated wine – had low alcohol content (4–6 % by volume) and their sensory attributes were similar to those of the original wine.


2017 ◽  
Vol 79 (1-2) ◽  
Author(s):  
Nur Syazwana Hasmadi ◽  
Nora Jullok ◽  
Al Nazifah Mat Razi ◽  
M. Hanif Harif Fadzilah

Reverse osmosis (RO) often used for desalination, in producing the ultrapure water for electronics, pharmaceuticals and power generation industries and also it was used in small niche process such as food processing and pollution control. Analysis of membrane performance required multiple of experimental run. Experimental work can be time consuming and costly. Hence, this work aims to model a small scale RO system by using a solution-diffusion model to minimize the experimental work. The model was verified by comparing the data obtained from the model and experimental data. Other studies, which include, the influence of solute feed concentration on the RO system was also been investigated. A commercial RO Trisep flat sheet membrane  was used. The solute permeate concentrations, solvent permeate flux, final solute feed concentrations and rejection rate of sodium chloride (NaCl) was analyzed to observe the membrane performance. Result shows that some experimental data has almost similar trend with the simulated data. Both solute feed concentration and rejection rate of NaCl over time show almost similar trends with percentage errors are 8.89% and 0.76% respectively. As solute feed concentration increased, the solute permeate concentration increased. In contrast to the solute permeate concentration, when the solute feed increases the solvent permeate flux decreases and rejection rate will also decrease. 


2013 ◽  
Vol 68 (7) ◽  
pp. 1512-1519 ◽  
Author(s):  
Changwei Zhao ◽  
Weihong Fan ◽  
Tao Wang ◽  
Deyin Hou ◽  
Zhaokun Luan

Spiramycin removal from wastewater using four nanofiltration (NF) membranes (NF270, NF90, ESNA1-K1 and ESNA1-LF2-LD) was studied. The effects of operating pressure, feed temperature, feed concentration, cation and anion ions on the permeate flux rate and spiramycin rejection were investigated. The results show that increasing operating pressure resulted in the increase of both permeate flux and spiramycin rejection. The flux rate increased almost linearly with temperature, while the spiramycin rejection decreased. The permeate flux rate declined relatively with increasing feed concentration of spiramycin for NF270 and ESNA1-LF2-LD membranes compared with NF90 and ESNA1-K membranes. The presence of cations reduced spiramycin rejection, with the strength of influence for the NF270 NF membrane following the order Mg2+>Ca2+>K+. The presence of anions also resulted in decreased spiramycin rejection, the strength of the effect following the order NO3−>Cl−>SO42− for the NF270 membrane.


2017 ◽  
Vol 23 (3) ◽  
pp. 207 ◽  
Author(s):  
A.L. Ahmad ◽  
S.W. Puasa ◽  
S. Abiding

Ultrafiltration membrane was used to treat the effluent from textile industries. Crossflow ultrafiltration using GN polymeric membrane was used to remove the dye from textile effluent. A synthetic textile effluent of Direct-15 dye was used. The study focused through the effect of feed concentration, transmembrane pressure and solution’s pH on the permeate flux and percentage of dye removal were investigated. Dye concentration had significant effects on flux values. Under the fixed pressures and pH, the flux decreased while the dye rejection increased with increasing feed concentration. Transmembrane pressure also had significant effect on flux values. Under the fixed feed concentration and pH, the flux increased while dye rejection decreased with increasing pressure. Experiment data showed that the highest flux was observed at pH 4 (acidic condition) while the highest dye removal observed at pH 7. Data collection could be used to improve the effectiveness of dye removal from textile industry wastewater using membrane technology.


2017 ◽  
Vol 105 (12) ◽  
Author(s):  
Runci Wang ◽  
Zhongwei Yuan ◽  
Taihong Yan ◽  
Weifang Zheng

AbstractTwo types of nanofiltration membranes were tested to remove uranium dissolved in ammonium nitrate solution, and the influence of operating parameters as transmembrane pressure, tangential velocity and feed temperature was investigated. Experimental results showed NF270 membrane can reject more than 96% uranium and allow most (90% min) ammonium nitrate solution passed by, and with a permeate flux of 60 L/(m


2019 ◽  
Author(s):  
Chem Int

The objective of this work is to study the ageing state of a used reverse osmosis (RO) membrane taken in Algeria from the Benisaf Water Company seawater desalination unit. The study consists of an autopsy procedure used to perform a chain of analyses on a membrane sheet. Wear of the membrane is characterized by a degradation of its performance due to a significant increase in hydraulic permeability (25%) and pressure drop as well as a decrease in salt retention (10% to 30%). In most cases the effects of ageing are little or poorly known at the local level and global measurements such as (flux, transmembrane pressure, permeate flow, retention rate, etc.) do not allow characterization. Therefore, a used RO (reverse osmosis) membrane was selected at the site to perform the membrane autopsy tests. These tests make it possible to analyze and identify the cause as well as to understand the links between performance degradation observed at the macroscopic scale and at the scale at which ageing takes place. External and internal visual observations allow seeing the state of degradation. Microscopic analysis of the used membranes surface shows the importance of fouling. In addition, quantification and identification analyses determine a high fouling rate in the used membrane whose foulants is of inorganic and organic nature. Moreover, the analyses proved the presence of a biofilm composed of protein.


Sign in / Sign up

Export Citation Format

Share Document