Comparison between InfoWorks hydraulic results and a physical model of an urban drainage system

2013 ◽  
Vol 68 (2) ◽  
pp. 372-379 ◽  
Author(s):  
Matteo Rubinato ◽  
James Shucksmith ◽  
Adrian J. Saul ◽  
Will Shepherd

Urban drainage systems are frequently analysed using hydraulic modelling software packages such as InfoWorks CS or MIKE-Urban. The use of such modelling tools allows the evaluation of sewer capacity and the likelihood and impact of pluvial flood events. Models can also be used to plan major investments such as increasing storage capacity or the implementation of sustainable urban drainage systems. In spite of their widespread use, when applied to flooding the results of hydraulic models are rarely compared with field or laboratory (i.e. physical modelling) data. This is largely due to the time and expense required to collect reliable empirical data sets. This paper describes a laboratory facility which will enable an urban flood model to be verified and generic approaches to be built. Results are presented from the first phase of testing, which compares the sub-surface hydraulic performance of a physical scale model of a sewer network in Yorkshire, UK, with downscaled results from a calibrated 1D InfoWorks hydraulic model of the site. A variety of real rainfall events measured in the catchment over a period of 15 months (April 2008–June 2009) have been both hydraulically modelled and reproduced in the physical model. In most cases a comparison of flow hydrographs generated in both hydraulic and physical models shows good agreement in terms of velocities which pass through the system.

2009 ◽  
Vol 59 (6) ◽  
pp. 1137-1143 ◽  
Author(s):  
M. Möderl ◽  
D. Butler ◽  
W. Rauch

Typically, performance evaluation of new developed methodologies is based on one or more case studies. The investigation of multiple real world case studies is tedious and time consuming. Moreover extrapolating conclusions from individual investigations to a general basis is arguable and sometimes even wrong. In this article a stochastic approach is presented to evaluate new developed methodologies on a broader basis. For the approach the Matlab-tool “Case Study Generator” is developed which generates a variety of different virtual urban drainage systems automatically using boundary conditions e.g. length of urban drainage system, slope of catchment surface, etc. as input. The layout of the sewer system is based on an adapted Galton-Watson branching process. The sub catchments are allocated considering a digital terrain model. Sewer system components are designed according to standard values. In total, 10,000 different virtual case studies of urban drainage system are generated and simulated. Consequently, simulation results are evaluated using a performance indicator for surface flooding. Comparison between results of the virtual and two real world case studies indicates the promise of the method. The novelty of the approach is that it is possible to get more general conclusions in contrast to traditional evaluations with few case studies.


2017 ◽  
Vol 21 (3) ◽  
pp. 1559-1572 ◽  
Author(s):  
Nadav Peleg ◽  
Frank Blumensaat ◽  
Peter Molnar ◽  
Simone Fatichi ◽  
Paolo Burlando

Abstract. The performance of urban drainage systems is typically examined using hydrological and hydrodynamic models where rainfall input is uniformly distributed, i.e., derived from a single or very few rain gauges. When models are fed with a single uniformly distributed rainfall realization, the response of the urban drainage system to the rainfall variability remains unexplored. The goal of this study was to understand how climate variability and spatial rainfall variability, jointly or individually considered, affect the response of a calibrated hydrodynamic urban drainage model. A stochastic spatially distributed rainfall generator (STREAP – Space-Time Realizations of Areal Precipitation) was used to simulate many realizations of rainfall for a 30-year period, accounting for both climate variability and spatial rainfall variability. The generated rainfall ensemble was used as input into a calibrated hydrodynamic model (EPA SWMM – the US EPA's Storm Water Management Model) to simulate surface runoff and channel flow in a small urban catchment in the city of Lucerne, Switzerland. The variability of peak flows in response to rainfall of different return periods was evaluated at three different locations in the urban drainage network and partitioned among its sources. The main contribution to the total flow variability was found to originate from the natural climate variability (on average over 74 %). In addition, the relative contribution of the spatial rainfall variability to the total flow variability was found to increase with longer return periods. This suggests that while the use of spatially distributed rainfall data can supply valuable information for sewer network design (typically based on rainfall with return periods from 5 to 15 years), there is a more pronounced relevance when conducting flood risk assessments for larger return periods. The results show the importance of using multiple distributed rainfall realizations in urban hydrology studies to capture the total flow variability in the response of the urban drainage systems to heavy rainfall events.


2009 ◽  
Vol 60 (7) ◽  
pp. 1919-1927 ◽  
Author(s):  
G. Vaes ◽  
T. Feyaerts ◽  
P. Swartenbroekx

Surface waters and urban drainage systems are usually studied separately. However there are important interactions between both systems. Urban drainage systems can have an important impact on the surface waters, mainly at combined sewer overflows. On the other hand during periods of high water levels in a river, the runoff from the urban drainage system can be significantly influenced by backwater, which increases the probability of flooding in is not obvious, because the modelling tools for both systems are often hard to combine properly. To properly assess the probability of flooding for this kind of integrated water systems, different submodels are needed for both subsystems. In practice often one single model is used to describe the runoff to rivers despite the presence of urban catchments. The main objective of this study is to show the limits of this simplified approach. Furthermore, it is necessary to use continuous long term simulations, because of the differences in runoff behaviour. Detailed hydrodynamic models do not really fit for this purpose because of long simulation times and high demands in memory and disk space. Therefore simplified conceptual models are more useful.


2013 ◽  
Vol 69 (2) ◽  
pp. 422-429 ◽  
Author(s):  
Tian Li ◽  
Wei Zhang ◽  
Cang Feng ◽  
Jun Shen

To assess the performance of urban drainage systems in metropolitan areas in southern China, 12 urban drainage systems, including nine separate sewer systems (SSSs) and three combined sewer systems (CSSs) were monitored from 2008 to 2012 in Shanghai and Hefei. Illicit connection rates of SSS were determined. The results indicate that serious illicit connections exist for most SSSs. Annual volume balance for two SSSs with serious illicit connection was assessed with a hydraulic model to determine the dry weather overflow volume. Although interception facilities have been implemented in SSSs, for some systems with serious illicit connections, a considerable volume of dry weather overflow still existed. Combined with monitoring of dry/wet weather flow quality, the pollutant load caused by wet/dry weather overflow was quantified. The results revealed that there was no obvious advantage of having SSSs over CSSs in terms of pollutant control. The serious pollution caused by illicit connections and insufficient management occurs in many cities in China. The performance assessment of separate and CSSs in Shanghai and Hefei provides important lessons and practical experience that can be applied to the construction and management of urban drainage system in China as well as other developing countries.


2007 ◽  
Vol 2 (2) ◽  
Author(s):  
A. R. Ladson ◽  
S. Lloyd ◽  
C. J. Walsh ◽  
T. D. Fletcher ◽  
P. Horton

Monitoring the hydrochemical efficiency of urban stormwater treatment devices is not straightforward as the traditional, automated, In urban areas, efficient drainage of impervious surfaces means that polluted stormwater is frequently delivered to streams. Commonly, catchment urbanization can increase runoff frequency by a factor of 10 or more, as the effective imperviousness - the proportion of the catchment that consists of impervious surfaces drained to streams - is increased. This causes a decline in stream health. To decrease runoff frequency, effective imperviousness must be reduced. This requires urban drainage systems to be redesigned, using techniques such as infiltration and rainwater harvesting, so that stormwater from small rain events is not piped directly to streams but instead is infiltrated, reused or retained. We have developed scenarios that explore alternative urban drainage systems appropriate for a small partly urbanised catchment in Melbourne’s east. These scenarios incorporate, biofiltration basins, swales and dual purpose rainwater tanks that supply water for householders. Our results suggested that sufficient reductions in effective imperviousness and runoff frequency are possible to achieve improvements in stream health.


1994 ◽  
Vol 29 (1-2) ◽  
pp. 437-444 ◽  
Author(s):  
Fons Nelen

The LOCUS modelling package, which has been designed to assess the performance of an urban drainage system that is controlled in real time is presented. Besides the simulation of 'optimal' controlled systems, LOCUS offers the possibility to simulate local (or static) controlled systems as well (i.e. the present way of operation of most urban drainage systems). Since an identical system description is used in both cases, the difference between the results is only due to the way the system is operated and hence the effects of real time control can be quantified by comparing the results. The use of the model is illustrated by a simple example, which shows that it is worth investigating the potential of real time control before constructing extra storage in the system. For a small fictitious system with limited storage capacity at the downstream section it is shown that this potential is comparable to increasing the storage capacity by 1.5 mm at this particular section.


2015 ◽  
Vol 72 (2) ◽  
pp. 165-179 ◽  
Author(s):  
Zeinab Yazdanfar ◽  
Ashok Sharma

Urban drainage systems are in general failing in their functions mainly due to non-stationary climate and rapid urbanization. As these systems are becoming less efficient, issues such as sewer overflows and increase in urban flooding leading to surge in pollutant loads to receiving water bodies are becoming pervasive rapidly. A comprehensive investigation is required to understand these factors impacting the functioning of urban drainage, which vary spatially and temporally and are more complex when weaving together. It is necessary to establish a cost-effective, integrated planning and design framework for every local area by incorporating fit for purpose alternatives. Carefully selected adaptive measures are required for the provision of sustainable drainage systems to meet combined challenges of climate change and urbanization. This paper reviews challenges associated with urban drainage systems and explores limitations and potentials of different adaptation alternatives. It is hoped that the paper would provide drainage engineers, water planners, and decision makers with the state of the art information and technologies regarding adaptation options to increase drainage systems efficiency under changing climate and urbanization.


2021 ◽  
Vol 13 (24) ◽  
pp. 13889
Author(s):  
Helena M. Ramos ◽  
Mohsen Besharat

Urban drainage systems are in transition from functioning simply as a transport system to becoming an important element of urban flood protection measures providing considerable influence on urban infrastructure sustainability. Rapid urbanization combined with the implications of climate change is one of the major emerging challenges. The increased concerns with water security and the ageing of existing drainage infrastructure are new challenges in improving urban water management. This study carried out in the Seixal area in Portugal examines flood risk analyses and mitigation techniques performed by computational modelling using MIKE SHE from the Danish Hydraulic Institute (DHI). Several scenarios were compared regarding flood risk and sustainable urban drainage systems (SuDS) efficiency. To obtain a more accurate analysis, the economic viability of each technique was analyzed as well through (i) life cost analysis and (ii) taking into account the damages caused by a certain type of flood. The results present that the best scenario is the one that will minimize the effects of great urbanization and consequently the flood risk, which combines two different measures: permeable pavement and detention basin. This alternative allows us to fully explore the mitigation capacity of each viable technique, demonstrating a very important improvement in the flood mitigation system in Seixal.


2021 ◽  
Author(s):  
Agnethe Nedergaard Pedersen ◽  
Jonas Wied Pedersen ◽  
Antonio Vigueras-Rodriguez ◽  
Annette Brink-Kjær ◽  
Morten Borup ◽  
...  

Abstract. This paper describes a comprehensive and unique open-access data set for research within hydrological and hydraulic modelling of urban drainage systems. The data comes from a mainly combined urban drainage system covering a 1.7 km2 area in the town of Bellinge, a suburb to the city of Odense, Denmark. The data set consists of up to 10 years of observations (2010–2020) from 13 level meters, one flow meter, one position-sensor and four power sensors in the system, along with rainfall data from three rain gauges and two weather radars (X- and C-band), and meteorological data from a nearby weather station. The system characteristics of the urban drainage system (information about manholes, pipes etc.) can be found in the data set along with characteristics of the surface area (contour lines etc.). Two detailed hydrodynamic, distributed urban drainage models of the system are provided in the software systems Mike Urban and EPA SWMM. The two simulation models generally show similar responses, but systematic differences are present since the models have not been calibrated. With this data set we provide a useful case that enables independent testing and replication of results from future scientific developments and innovation within urban hydrology and urban drainage system research. The data set can be downloaded from https://doi.org/10.11583/DTU.c.5029124, (Pedersen et al., 2021a). 


2009 ◽  
Vol 60 (10) ◽  
pp. 2507-2513 ◽  
Author(s):  
M. Möderl ◽  
M. Kleidorfer ◽  
R. Sitzenfrei ◽  
W. Rauch

This article presents the development and application of the software tool VulNetUD. VulNetUD is a tool for GIS-based identification of vulnerable sites of urban drainage systems (UDS) using hydrodynamic simulations undertaken using EPA SWMM. The benefit of the tool is the output of different vulnerability maps rating sewer surcharging, sewer flooding, combined sewer overflow (CSO) efficiency and CSO emissions. For this, seven predefined performance indicators are used to evaluate urban drainage systems under abnormal, critical and future conditions. The application on a case study highlights the capability of the tool to identify weak points of the urban drainage systems. Thereby it is possible to identify urban drainage system components which cause the highest performance decrease across the entire system. The application of the method on a real world case study shows for instance that a reduction of catchment areas which are located upstream of CSOs with relatively less capacity in the downstream sewers achieves the highest increases efficiency of the system. Finally, the application of VulNetUD is seen as a valuable tool for managers and operators of waste water utilities to improve the efficiency of their systems. Additionally vulnerability maps generated by VulNetUD support risk management e.g. decision making in urban development planning or the development of rehabilitation strategies.


Sign in / Sign up

Export Citation Format

Share Document