Treatment on low carbon-to-nitrogen micro-polluted water by layered biological aerated filter with floating and sunken media

2013 ◽  
Vol 68 (12) ◽  
pp. 2613-2618 ◽  
Author(s):  
Xiaoning Jia ◽  
Yanfeng Li ◽  
Lincheng Zhou ◽  
Yanli Yue ◽  
Gang Xie ◽  
...  

In order to improve the TN removal efficiency on low carbon-to-nitrogen micro-polluted water, in this study, a layered biological aerated filter (L-BAF) was built. The results showed that the removal efficiency for CODMn, NH3-N, and TN was 71.6–90.3%, 99.8–99.9%, and 57.8–65.7%, respectively, when the C/N ratio was kept at 3 and the volumetric flow rate was 0.072 m3 d−1. The L-BAF could improve the TN removal efficiency by about 20% compared to a traditional process. The L-BAF and traditional process removal efficiency for NH3-N and CODMn were similar. The kinetic performance of the L-BAF indicated that the relationship of CODMn removal efficiency with the influent CODMn concentration could be described by ln(C/C0) = −(0.0023/Q0C00.9398)H.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yi Wu ◽  
Jun Dai ◽  
Qiong Wan ◽  
Guobin Tian ◽  
Dongyang Wei

Filler plays an important role in biological sewage treatment technology. In the purification of urban sewage river, the single sponge iron filler is easy to harden. The combination of sponge iron and ceramsite can hinder the hardening and improve the removal efficiency. In this paper, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the fillers. The removal efficiency experiments were carried out through the self-designed biological aerated filter (BAF) reactor with sponge iron and ceramsite mixed fillers, and the microorganisms attached to the surface of the biological fillers were qualitatively and quantitatively identified through 16S rDNA. The results indicate that the presence of Fe3O4, Fe2O3, Fe3C, and Fe2CO3 in sponge iron determines that sponge iron has strong reducibility and provides electrons for efficient denitrification. NaAlSi3O8 in ceramsite filler plays a significant role in phosphorus adsorption. In #3, #4, and #5 reactors (the mass ratios of sponge iron and ceramsite were 1 : 1, 3 : 1, and 1 : 3, resp.), the removal efficiencies of mixed fillers are good on chemical oxygen demand (COD), total phosphorus (TP), and nitrogen (N), and the more the ceramsite fillers in the reactors are, the higher the microbial abundance and diversity are. The mixture of sponge iron and ceramsite can be used to purify urban sewage river. A scientific basis to purify the polluted water body of urban rivers in situ is thus provided.


2014 ◽  
Vol 565 ◽  
pp. 147-151
Author(s):  
Chanchai Wiroonritichai ◽  
Pollakrit Kritmaitree

This paper describes the feasibility study of wind driven scroll pump for wind energy application using in Thailand to design, fabricate and test. The testing set was adapted by the Japanese Industrial Standards (JIS B 8301) to define the relationship of pressure and flow rate curve (H-Q Curves), the relatioship of flow rate and pump speed , and the volumetric flow rate. The results presented the pressure and flow rate which showed the inverse variation in linear equations. The speed of the pump and flow rate were direct variation in linear equations. The maximum flow rate was 20.23 liters/minute in the speed of 714 RPM which fully opened valve. The average of volumetric efficiency was 89.55%.


2012 ◽  
Vol 441 ◽  
pp. 589-592
Author(s):  
Zhi Min Fu ◽  
Yu Gao Zhang ◽  
Xiao Jun Wang

A combined process of biological wriggle bed and ozone biological aerated filter was utilized to treat textile wastewater. Results showed that COD removal efficiency was almost 90.4%. The average effluent COD was 85.87 mg/L. The effluent colority was 64-32 times. This study indicated that the combined process is potentially useful for treating textile wastewater.


2021 ◽  
Author(s):  
Bernhard Schmid

<p>The work reported here builds upon a previous pilot study by the author on ANN-enhanced flow rating (Schmid, 2020), which explored the use of electrical conductivity (EC) in addition to stage to obtain ‘better’, i.e. more accurate and robust, estimates of streamflow. The inclusion of EC has an advantage, when the relationship of EC versus flow rate is not chemostatic in character. In the majority of cases, EC is, indeed, not chemostatic, but tends to decrease with increasing discharge (so-called dilution behaviour), as reported by e.g. Moatar et al. (2017), Weijs et al. (2013) and Tunqui Neira et al.(2020). This is also in line with this author’s experience.</p><p>The research presented here takes the neural network based approach one major step further and incorporates the temporal rate of change in stage and the direction of change in EC among the input variables (which, thus, comprise stage, EC, change in stage and direction of change in EC). Consequently, there are now 4 input variables in total employed as predictors of flow rate. Information on the temporal changes in both flow rate and EC helps the Artificial Neural Network (ANN) characterize hysteretic behaviour, with EC assuming different values for falling and rising flow rate, respectively, as described, for instance, by Singley et al. (2017).</p><p>The ANN employed is of the Multilayer Perceptron (MLP) type, with stage, EC, change in stage and direction of change in EC of the Mödling data set (Schmid, 2020) as input variables. Summarising the stream characteristics, the Mödling brook can be described as a small Austrian stream with a catchment of fairly mixed composition (forests, agricultural and urbanized areas). The relationship of EC versus flow reflects dilution behaviour. Neural network configuration 4-5-1 (the 4 input variables mentioned above, 5 hidden nodes and discharge as the single output) with learning rate 0.05 and momentum 0.15 was found to perform best, with testing average RMSE (root mean square error) of the scaled output after 100,000 epochs amounting to 0.0138 as compared to 0.0216 for the (best performing) 2-5-1 MLP with stage and EC as inputs only.    </p><p> </p><p>References</p><p>Moatar, F., Abbott, B.W., Minaudo, C., Curie, F. and Pinay, G.: Elemental properties, hydrology, and biology interact to shape concentration-discharge curves for carbon, nutrients, sediment and major ions. Water Resources Res., 53, 1270-1287, 2017.</p><p>Schmid, B.H.: Enhanced flow rating using neural networks with water stage and electrical conductivity as predictors. EGU2020-1804, EGU General Assembly 2020.</p><p>Singley, J.G., Wlostowski, A.N., Bergstrom, A.J., Sokol, E.R., Torrens, C.L., Jaros, C., Wilson, C.,E., Hendrickson, P.J. and Gooseff, M.N.: Characterizing hyporheic exchange processes using high-frequency electrical conductivity-discharge relationships on subhourly to interannual timescales. Water Resources Res. 53, 4124-4141, 2017.</p><p>Tunqui Neira, J.M., Andréassian, V., Tallec, G. and Mouchel, J.-M.: A two-sided affine power scaling relationship to represent the concentration-discharge relationship. Hydrol. Earth Syst. Sci. 24, 1823-1830, 2020.</p><p>Weijs, S.V., Mutzner, R. and Parlange, M.B.: Could electrical conductivity replace water level in rating curves for alpine streams? Water Resources Research 49, 343-351, 2013.</p>


2013 ◽  
Vol 361-363 ◽  
pp. 764-767
Author(s):  
Hai Tang ◽  
Long Ouyang ◽  
Xiang Zhao

The ammonia nitrogen (NH4-N) removal enhanced by biological aerobic filter (BAF) packed with novel micro-mesoporous lightweight zeolite particles (LZP) as carrier. The results showed that the biofilm can quickly grow up using LZP as media in the BAF. HLR of 1.2 was chosen as the optimal value under the average influent NH4+-N concentration of 24.6 mg/L, percent NH4-N removal of 87% and NLR of 0.24 kgN/m3.d was achieved. The kinetic performance of the LZP-BAF indicated that the relationship of NH4-N removal efficiency with the L could be described by an exponential equation (Ce/Ci=exp (-1.24/L0.344)).


2011 ◽  
Vol 103 ◽  
pp. 209-213
Author(s):  
Song Bai Li ◽  
Yi Lun Liu

In order to obtain the lubricating capabilityof screw rotary cylinder, its structural design and operation principle were introduced. Seven screw pairs with different radial clearance were designed. The models were built by Pro/E. Structure mesh was generated by using Gambit. Based on laminar flow model and SIMPLE algorithm, the interior flow field in different radial clearances and the same radial clearance at different inlet pressure were numerically simulated and analyzed with Fluent. The relationship of loading force, stiffness, maximum temperature, flow rate and radial clearance were obtained. Simulation results show that the performance of oil lubricated screw pair is the best at the radial clearance of 0.10 mm. At the same radial clearance, when back pressure is constant, with inlet pressure increasing, loading force, stiffness, flow rate and maximum temperature increase completely.


2013 ◽  
Vol 295-298 ◽  
pp. 1376-1379
Author(s):  
Lei Zhu ◽  
Fang Xing Liu ◽  
Xiao Lin Jiang ◽  
Hong Jiao Song

In this study, the alternating 3-stage biological aerated filter system with the brush as the filler was proposed for campus sewage treatment and the biofilm formation process was researched. Adopting the four-stage inoculated biofilm formation method, the treatment effects of the 3 filter columns respectively lasted 23d, 20d, 23d to reach stable. After the attached biofilm grew steadily, the effluent COD concentration was between 45 mg/L and 95 mg/L, and the removal efficiency was 77%~85%. The effluent NH4+-N concentration of 1st and 3rd filter columns was 11~25 mg/L, and the removal efficiency was 47%~67%; while the effluent NH4+-N concentration of 2nd filter column was 8 ~19 mg/L, the removal efficiency was 64%~ 78%.


2016 ◽  
Vol 73 (8) ◽  
pp. 2031-2038 ◽  
Author(s):  
L. Y. Fu ◽  
C. Y. Wu ◽  
Y. X. Zhou ◽  
J. E. Zuo ◽  
Y. Ding

In this study, petrochemical secondary effluent was treated by a 55 cm diameter pilot-scale biological aerated filter (BAF) with a media depth of 220 cm. Volcanic rock grains were filled as the BAF media. Median removal efficiency of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) was 29.35 and 57.98%, respectively. Moreover, the removal profile of the COD, NH3-N, total nitrogen and total organic carbon demonstrated that the filter height of 140 cm made up to 90% of the total removal efficiency of the final effluent. By gas chromatography–mass spectrometry, removal efficiencies of 2-chloromethyl-1,3-dioxolane, and benzonitrile, indene and naphthalene were obtained, ranging from 30.12 to 63.01%. The biomass and microbial activity of the microorganisms on the filter media were in general reduced with increasing filter height, which is consistent with the removal profile of the contaminants. The detected genera Defluviicoccus, Betaproteobacteria_unclassified and the Blastocatella constituted 1.86–6.75% of the identified gene, enhancing the COD and nitrogen removal in BAF for treating petrochemical secondary effluent.


Sign in / Sign up

Export Citation Format

Share Document