The Ammonia Nitrogen Removal Enhanced by Biological Aerobic Filter Packed with a Novel Lightweight Zeolite Particles

2013 ◽  
Vol 361-363 ◽  
pp. 764-767
Author(s):  
Hai Tang ◽  
Long Ouyang ◽  
Xiang Zhao

The ammonia nitrogen (NH4-N) removal enhanced by biological aerobic filter (BAF) packed with novel micro-mesoporous lightweight zeolite particles (LZP) as carrier. The results showed that the biofilm can quickly grow up using LZP as media in the BAF. HLR of 1.2 was chosen as the optimal value under the average influent NH4+-N concentration of 24.6 mg/L, percent NH4-N removal of 87% and NLR of 0.24 kgN/m3.d was achieved. The kinetic performance of the LZP-BAF indicated that the relationship of NH4-N removal efficiency with the L could be described by an exponential equation (Ce/Ci=exp (-1.24/L0.344)).

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2683
Author(s):  
Xiaodong Wang ◽  
Lijuan Chu ◽  
Yujia Song ◽  
Guodong Wang ◽  
Ming Jiang

The total nitrogen (TN) increases and the water quality deteriorates when a large amount of nitrogen-containing water is discharged from farmlands into wetlands. This research on the relationship between the TN, ammonia nitrogen (NH4-N), and nitrate nitrogen (NO3-N) concentrations in water has a certain reference significance for understanding the spatial pattern of nitrogen removal in wetlands. Taking the Sanhuanpao wetland in northeast China as the research object, 24 sampling plots in the study area were sampled in the spring and summer of 2017 to test the concentrations of TN, NH4-N, and NO3-N. Based on the calculations of the change rates of the TN, NH4-N, and NO3-N in spring and summer, a step-by-step elimination analysis was carried out and the spatial pattern of the TN, NH4-N, and NO3-N removals were revealed by gradual buffer extrapolations, combined with stepwise fitting functions. The results show that the removal capacity of NH4-N is strong within the range of 14.55 km–20 km and 26.93 km–35.96 km from the wetland inlet, and the removal capacity of NO3-N is relatively strong within the range of 26.93 km–35.96 km. The strong NH4-N and NO3-N removal areas in the wetland are not in the geometric center of the wetland, but in separate narrow areas around the center. The TN removal along water channel direction is only 0.25 times higher than that direction perpendicular to the channel, indicating that regardless of whether wetlands are expanded along the water channel or perpendicular to the water channel, the difference to the TN removal is small. Effectively monitoring and managing the reception of agricultural drainage is extremely important for maintaining the water-purification function of wetlands. The aim of the research is to reveal a spatial law of nitrogen removal in wetland water, and provide a framework for studying the mechanism of spatial difference of nitrogen.


1994 ◽  
Vol 30 (12) ◽  
pp. 297-306 ◽  
Author(s):  
Joseph Akunna ◽  
Claude Bizeau ◽  
René Moletta ◽  
Nicolas Bernet ◽  
Alain Héduit

Two laboratory upflow aerobic and anaerobic filters fed with synthetic wastewaters were used to study firstly the effects of aeration rate on the nitrification of anaerobically pre-treated effluents and secondly the effects of recycle-to-influent ratios on methane production rate, denitrification and nitrification performances of a combined aerobic and anaerobic wastewater treatment process. Nitrification of anaerobically pre-treated effluent was accompanied by aerobic post-treatment for residual COD removal. A comparison of nitrification performances using autotrophic medium and anaerobically pre-treated effluents (containing 1203 mg COD 1−1) with the same ammonia nitrogen concentration of about 300 mg NH4-N 1−1 showed that 3% of added ammonia nitrogen was assimilated by autotrophic nitrifiers during nitrification of the autotrophic medium while up to 30% was assimilated by both nitrifiers and heterotrophs during organic carbon removal and nitrification of anaerobically pre-treated effluent. Furthermore, it was suspected that significant nitrogen loss through denitrification occured in the aerobic filter especially at low aeration rates. In the study of the combined aerobic-anaerobic system, maximum ammonia nitrogen removal of 70% through denitrification was obtained at recycle-to-influent ratios of 4 and 5. COD removal efficiency in the anaerobic filter decreased from 77 to 60% for recycle-to-influent ratios of zero to 5. Overall COD removal efficiency of the entire system was constant at about 99% due to heterotrophic COD removal in the aerobic filter.


Author(s):  
Kangmao He ◽  
Huapeng Qin ◽  
Fan Wang ◽  
Wei Ding ◽  
Yixiang Yin

Adding a submerged zone (SZ) is deemed to promote denitrification during dry periods and thus improve NO3--N removal efficiency of a bioretention system. However, few studies had investigated the variation of nitrogen concentration in the SZ during dry periods and evaluated the effect of the variation on nitrogen removal of the bioretention system. Based on the experiment in a mesocosm bioretetion system with SZ, this study investigated the variation of nitrogen concentration of the system under 17 consecutive cycles of wet and dry alternation with varied rainfall amount, influent nitrogen concentration and antecedent dry periods (ADP). The results indicated that (1) during the dry periods, NH4+-N concentrations in SZ showed an exponential decline trend, decreasing by 50% in 12.9 ± 7.3 hours; while NO3--N concentrations showed an inverse S-shape decline trend, decreasing by 50% in 18.8 ± 6.4 hours; (2) during the wet periods, NO3--N concentration in the effluent showed an S-shape upward trend; and at the early stage of the wet periods, the concentration was relatively low and significantly correlated with ADP, while the corresponding volume of the effluent was significantly correlated with the SZ depth; (3) in the whole experiment, the contribution of nitrogen decrease in SZ during dry periods to NH4+-N and NO3--N removal accounted for 12% and 92%, respectively; and the decrease of NO3--N in SZ during the dry period was correlated with the influent concentration in the wet period and the length of the dry period.


1990 ◽  
Vol 50 (3) ◽  
pp. 425-438 ◽  
Author(s):  
A. J. Rook ◽  
M. Gill

ABSTRACTData on individually recorded silage dry-matter intake (SDMI), concentrate dry-matter intake (CDMI) and live weight of steers and data on silage composition including toluene dry matter (TDM), pH, total nitrogen (N), ammonia nitrogen (NH3-N), volatile fatty acids (VFAs), digestible organic matter in the dry matter (DOMD) and neutral-detergent fibre (NDF) obtained from experiments conducted at three sites were used to obtain simple and multiple linear regressions of SDMI on other variables.Live weight accounted for a high proportion of the variation in intake but this effect could generally be removed by scaling intake by live weight raised to the power of 0·75 (M0·75). CDMI was the most important factor affecting scaled intake in mixed diets. TDM, NH,-N and VFAs all had important effects on SDMI. The relationship of SDMI with TDM was curvilinear suggesting that there is little to be gained in intake terms from wilting to TDM above 250 g/kg. The effect of NH3-N appeared to be related more to its correlation with VFAs than with any other nitrogenous constituent while the VFAs appeared to have a direct effect on SDMI. The effects of N and pH on SDMI were generally small. DOMD and NDF had relatively little effect on SDMI. Significant differences in intercepts between sites were found for most relationships although common slopes were often found.


2018 ◽  
Vol 78 (9) ◽  
pp. 1843-1851 ◽  
Author(s):  
İ. Çelen-Erdem ◽  
E. S. Kurt ◽  
B. Bozçelik ◽  
B. Çallı

Abstract The sludge digester effluent taken from a full scale municipal wastewater treatment plant (WWTP) in Istanbul, Turkey, was successfully deammonified using a laboratory scale two-stage partial nitritation (PN)/Anammox (A) process and a maximum nitrogen removal rate of 1.02 kg N/m3/d was achieved. In the PN reactor, 56.8 ± 4% of the influent NH4-N was oxidized to NO2-N and the effluent nitrate concentration was kept below 1 mg/L with 0.5–0.7 mg/L of dissolved oxygen and pH of 7.12 ± 12 at 24 ± 4°C. The effluent of the PN reactor was fed to an upflow packed bed Anammox reactor where high removal efficiency was achieved with NO2-N:NH4-N and NO3-N:NH4-N ratios of 1.32 ± 0.19:1 and 0.22 ± 0.10:1, respectively. The results show that NH4-N removal efficiency up to 98.7 ± 2.4% and total nitrogen removal of 87.7 ± 6.5% were achieved.


2004 ◽  
Vol 49 (5-6) ◽  
pp. 207-214 ◽  
Author(s):  
J.J. Lee ◽  
C.U. Choi ◽  
M.J. Lee ◽  
I.H. Chung ◽  
D.S. Kim

This research is concerned with the removal of ammonia nitrogen and phosphorus in foodwaste by crystallization. Reductions have been achieved by struvite formation after the addition of magnesium ions (Mg2+). Magnesium ions used in this study were from magnesium salts of MgCl2. The results of our analysis using scanning electron microscopy and energy dispersive X-ray analysis showed that the amount of struvite in precipitated sludge grew enough to be seen with the naked eye (600-700μm). EDX analysis also showed that the main components of the struvite were magnesium and phosphorus. NH3-N removal efficiency using MgCl2 was 67% while PO4-P removal efficiency was 73%. It was confirmed that nitrogen and phosphorus could be stabilized and removal simultaneously through anaerobic digestion by Mg, NH3 and PO4-P, which were necessary for struvite formation.


2017 ◽  
Vol 75 (12) ◽  
pp. 2908-2915 ◽  
Author(s):  
Yinghe Jiang ◽  
Yao Li ◽  
Ying Zhang ◽  
Xiangling Zhang

Constructed wetland is widely used to treat municipal sewage. However, lack of carbon source always constraints the application of constructed wetland in advanced tailwater treatment process. Bark was used as the filler and external carbon source of constructed wetland in the study, and the effects of hydraulic retention time (HRT) on NO3−−N removal efficiency and carbon release velocity were explored. Results showed that the NO3−−N removal process was steady in the constructed wetland filled with bark without additional carbon source. The NO3−−N removal efficiency and NO3−−N concentration presented a first-order reaction. The reaction rate constant k was 0.4 day−1. The relationship between NO3−−N removal efficiency (η) and HRT (t) was η = 1-e−0.4t, and η was increased with increasing of HRT. η reached a maximum of 77% at HRT of 4.48 days. η obtained the minimum of 20% at HRT of 0.75 days. The relationship between the carbon source releasing velocity (v) by bark and HRT was v = 0.53(1.62/t-1/t2) + 0.32. v increased first and then decreased with HRT increasing. The maximum v was detected at t = 1.12 days.


1991 ◽  
Vol 18 (6) ◽  
pp. 940-944 ◽  
Author(s):  
J. B. Sérodes ◽  
E. Walsh ◽  
O. Goulet ◽  
J. de la Noue ◽  
C. Lescelleur

Design criteria of a pilot plant for treating secondary municipal effluents using filamentous, bioflocculating micro-algae were evaluated. Using a sequential batch reactor, the best removal rate of ammonia nitrogen was reached for 25% draw volume; at 20–22 °C, up to four cycles per day could be achieved giving a removal efficiency of approximately 2 g of N per day and per square meter of basin (200 mm deep) with negligible nitrogen residual; increasing the water level by increments of 200 mm (from 200 to 600 mm) increased the N removal efficiency in a way similar to an increase in the number of renewals per day on a 200 mm deep basin. The dominant micro-algae (Chlorhormidium) was heavily influenced by the water temperature. Key words: micro-algae, municipal wastewater, water treatment, ammonia nitrogen, removal rate, removal efficiency.


Sign in / Sign up

Export Citation Format

Share Document