Kinetic studies of Cd (II) and Pb (II) ions biosorption from aqueous media using untreated and chemically treated biosorbents

2014 ◽  
Vol 69 (11) ◽  
pp. 2230-2236 ◽  
Author(s):  
G. K. Bakyayita ◽  
A. C. Norrström ◽  
M. Nalubega ◽  
R. N. Kulabako

Untreated and chemically treated Albizia coriaria, Erythrina abyssinica and Musa spp. were studied in batch for uptake of Cd2+ and Pb2+ ions at pH 2.0–9.0 and agitation time of 30–390 min. Optimum biosorption conditions were pH 4 for Pb2+ ions and pH 5 for Cd2+ ions, contact time was 3.5 hours at 24 ± 1 °C for 10 mg/L biosorbent dosage and initial metal ions concentration of 20 mg/L. Chemical treatment had a 10–17% biosorption efficiency enhancement for Cd2+ ions and a 1.6–2.3% reduction effect for Pb2+ ions. The sorption capacities for Cd2+ and Pb2+ ions for treated biosorbents were 1.760–1.738 mg g−1 compared to 1.415–1.539 mg g−1 for untreated materials. The pseudo second-order model suitably fitted the Cd2+ and Pb2+ ions biosorption data with regression coefficients (R2) of 0.9784–0.9999. Fitting of the Ho model to the experimental data showed that the biosorption mechanism for both metal ions studied was mainly a chemisorption process. Therefore, treated A. coriaria, E. abyssinica and Musa spp. were potential biosorbents for remediation of Cd2+ ions and the untreated materials suitable for removing Pb2+ ions from contaminated aqueous media.

2014 ◽  
Vol 661 ◽  
pp. 39-44
Author(s):  
Nur Khalida Adibah Md Rodzi ◽  
Senusi Faraziehan ◽  
Alrozi Rasyidah

In this study, biosorption of copper and zinc ions on Baker’s yeast, Saccharomyces Cerevisiae was investigated. The data of batch experiments was used to perform equilibrium and kinetic studies. The experimental results were fitted well to the Langmuir and Freundlich model isotherms. According to the parameters of Langmuir isotherm, the maximum biosorption capacities of copper and zinc ions onto immobilized yeast were 5.408mg/g and 1.479mg/g at 293 Kfor the treated beads. Competitive biosorption of two metal ions was investigated in terms of maximum sorption quantity. The binding capacity for copper ions is more than the zinc ions for both untreated and treated immobilized yeast.While, for the kinetic studies, the pseudo second order model was found the most suitable model for the present systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadavala Siva Kumar ◽  
Hamid M. Shaikh ◽  
Mohammad Asif ◽  
Ebrahim H. Al-Ghurabi

AbstractThis study investigated a novel agricultural low-cost bio-waste biochar derived from wood apple fruit shell waste via the pyrolysis method, which is modified by ball milling and utilized to remove toxic phenol and chlorophenols (4-CPh and 2,4-DCPh) from contaminated aqueous media. The ball-milled wood apple fruit shell waste biochar (WAS-BC) sorbent was systematically analyzed by BET, CHN, and FTIR as well as particle size, SEM–EDS, XPS and TGA studies. The sorption equilibrium and kinetic studies exhibit that the sorption capacity was greater than 75% within the first 45 min of agitation at pH 6.0. The uptake capacity of 2,4-DCPh onto WAS-BC was greater than those of 4-CPh and phenol. Equilibrium results were consistent with the Langmuir isotherm model, while the kinetic data were best represented by the Elovich and pseudo-second-order model. The maximum uptake of phenol, 4-CPh, and 2,4-DCPh was 102.71, 172.24, and 226.55 mg/g, respectively, at 30 ± 1 °C. Thus, this study demonstrates that WAS-BC is an efficient, low-cost sorbent that can be used for the elimination of phenol and chlorophenol compounds from polluted wastewater.


e-Polymers ◽  
2018 ◽  
Vol 18 (3) ◽  
pp. 217-228 ◽  
Author(s):  
Amir Vahedi ◽  
Mohammadreza Rahmani ◽  
Zahra Rahmani ◽  
Mohammadali Moghaddasi ◽  
Farid Talebnia Rowshan ◽  
...  

AbstractIn this study, humic acid-immobilized-amine-modified polyacrylamide/sepiolite (Ha-Am-Paa-Sep) and phytic acid-modified polyacrylamide/sepiolite composites (Phy-Paa-Sep) were prepared and characterized for removal of Cu(II) and Ni(II) from aqueous solutions. The effects of contact time, initial concentration of adsorbent and metal ions, pH and temperature on the adsorption process were investigated. The optimum adsorption of metal ions occurred at pH 5 and 25°C. Ion exchange and complexation reactions were the main mechanisms for adsorption of metal ions. Removal of metal ions followed a pseudo-second-order kinetics and equilibrium occurred after 60 min. The conformity of various adsorption models to the equilibrium data was evaluated among which Freundlich isotherm model gave the best fitting result. The highest monolayer adsorption capacity of Cu(II) and Ni(II) ions were 244 and 250 mg·g−1 for Ha-Am-Paa-Sep and 256.4 and 277 mg·g−1 for Phy-Paa-Sep, respectively, at room temperature. Ultimately, desorption experiments were performed and the results showed approximately 95% of adsorbed metal ions were desorbed.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
E. Igberase ◽  
P. Osifo ◽  
A. Ofomaja

In this investigation, an amino functionalized adsorbent was developed by grafting 4-aminobenzoic acid onto the backbone of cross-linked chitosan beads. The 3 sets of beads including chitosan (CX), glutaraldehyde cross-linked chitosan (CCX), and 4-aminobenzoic acid grafted cross-linked chitosan (FGCX) were characterized by FTIR, XRD, SEM, and TGA. The water content and amine concentration of FGCX were determined. The effect of adsorption parameters was studied and the optimum was used for further studies. Equilibrium data was obtained from the adsorption experiment carried out at different initial concentration; the data were applied in isotherm, thermodynamics, and kinetic studies. The Langmuir and Dubinin-Kaganer-Radushkevich (DKR) models were successful in describing the isotherm data for the considered metal ions while the Freundlich and Temkin model fit some of the considered metal ions. Pseudo-second-order and intraparticle model described the kinetic data quite well. Thermodynamic parameters such as Gibb’s free energy change (ΔGo), enthalpy change (ΔHo), and entropy change (ΔSo) were calculated and the results showed that the adsorption of Pb, Cu, Ni, Zn, and Cd ions onto FGCX is spontaneous and endothermic in nature. Regeneration of the spent adsorbent was efficient for the considered metal ions.


2013 ◽  
Vol 11 (12) ◽  
pp. 2048-2057 ◽  
Author(s):  
Daniela Suteu ◽  
Alexandra Blaga ◽  
Mariana Diaconu ◽  
Teodor Malutan

AbstractThe biosorption Brilliant Red HE-3B reactive dye by nonliving biomass, Saccharomyces cerevisiae, in batch procedure was investigated. Equilibrium experimental data were analyzed using Freundlich, Langmuir and Dubinin — Radushkevich isotherm models and obtained capacity about 104.167 mg g−1 at 20°C. The batch biosorption process followed the pseudo-second order kinetic model. The multi-linearity of the Weber-Morris plot suggests the presence of two main steps influencing the biosorption process: the intraparticle diffusion (pore diffusion), and the external mass transfer (film diffusion). The results obtained in batch experiments revealed that the biosorption of reactive dye by biomass is an endothermic physical-chemical process occurring mainly by electrostatic interaction between the positive charged surface of the biomass and the anionic dye molecules. The biosorption mechanism was confirmed by FT-IR spectroscopy and microscopy analysis


2019 ◽  
Vol 10 (2) ◽  
pp. 156-165
Author(s):  
Ismail Ibrahim Abbas ◽  
Bassem Mohamad Riad El Hamaoui ◽  
Hilal Mohamad Jamal Najmeddine

In this research, calixpyrrole modified silica (III) was synthesized and characterized by Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and scanning electron microscope (SEM) techniques. The synthesized material was used as an extractant for the removal of 4-chlorophenol from aqueous solution. Its efficiency was examined through both batch and column extraction methods. The effects of temperature, pH, initial chlorophenol concentration and mass of the adsorbent were examined using removal efficiencies. Initial concentration and quantity of adsorbent show a noticeable influence on the uptake capacity of the adsorbent. The kinetics and thermodynamics of chlorophenol removal from aqueous media were also investigated. Kinetic studies indicated that the extraction data can be best represented by pseudo second order model. Column extraction data were analyzed through Thomas, Yoon-Nelson and Yan et al. models to calculate kinetic coefficients and maximum sorption capacity of the modified silica (III). The adsorbent silica was regenerated by acid treatment without changing its properties.


2020 ◽  
pp. 5-18
Author(s):  
Il'dar Gil'manovich Shaykhiyev ◽  
Svetlana Vasil'yevna Sverguzova ◽  
Karina Il'darovna Shaykhiyeva ◽  
Zhanna Anuarovna Sapronova

The literature data on the crushed walnut shells usageas a sorption material for metal ions, dyes and some organic compounds removal from aqueous media are summarized. Trees of the Juglans regia species are widespread in Russia; their shells are natural annually replenished material that is of industrial importance and can be used as sorption material for the extraction of many pollutants from aquatic environments. The paper gives a characteristic of the walnut shell, shows the indicators of the main substances that make up the shell (cellulose, lignin, hemicellululose), indicates the approximate specific surface area for BET and the content of functional groups. The results of studies of the adsorption of metal ions and and some dyes adsorption by walnut shellsare considered. The values of sorption indices for the studied pollutants are given. It is shown that it is possible to increase the sorption characteristics by chemical modification of the Juglans regia shell. It is determined that sorption isotherms in most cases are more fully described by the Langmuir model, and the process kinetics in all cases obeys the pseudo-second order model.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 149
Author(s):  
Chunhui Zheng ◽  
Chunlin He ◽  
Yingjie Yang ◽  
Toyohisa Fujita ◽  
Guifang Wang ◽  
...  

The continuous expansion of the market demand and scale of commercial amidoxime chelating resins has caused large amounts of resin to be discarded around the world. In this study, the waste amidoxime chelating resin was reutilized as an adsorbent for the removal and recovery of Pb(II), Cu(II), Cd(II) and Zn(II) ions from aqueous solutions. The physical morphology and chemical composition of the waste amidoxime chelating resin (WAC-resin) from the factory was characterized by the elemental analyzer, X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The influence of the initial metal ions concentration, contact time, temperature and the solution pH on the adsorption performance of the metal ions was explored by batch experiments. It was shown that the optimal pH was 4. Kinetic studies revealed that adsorption process corresponded with the pseudo-second-order kinetic model and the adsorption isotherm was consistent with the Langmuir model. At room temperature, the adsorption capacities of WAC-resin for Pb2+, Cu2+, Zn2+ and Cd2+ reached 114.6, 93.4, 24.4 and 20.7 mg/g, respectively.


2021 ◽  
Vol 12 (3) ◽  
pp. 3173-3185

The paper summarizes the literature data on the use of onion (Allium cepa) processing waste as sorption materials to remove various pollutants (metal ions, dyes, antibiotics) from aqueous media. It provides brief literature data on the structure, volume of cultivation, and chemical composition of some components of onion biomass. It was found that onions contain many amino acids, vitamins, polyphenolic compounds, and other biologically active compounds that have various functional groups in their composition. This contributes to the removal of various metal ions (Ca2+, Cd2+, Cr(VI), Cu2+, Hg2+, Mg2+, Ni2+, Pb2+, Zn2+) from aqueous media with native and modified onion processing waste (onion skin). The work shows the possibility of increasing the sorption characteristics of pollutants by treating the Allium cepa biomass with various chemical reagents. It was found that the pollutant adsorption isotherms on onion skin are most often more accurately described by the Langmuir and Freundlich models, less often by other models. The kinetics of the process predominantly corresponds to the pseudo-second-order model. It was shown that the use of onion skin extracts modified with various chemical compounds is promising for removing heavy metal ions. The work also shows the possibility of using onion skin modified by plasma and microwave radiation to remove the Methylene blue dye from simulated solutions.


2019 ◽  
pp. 1-8
Author(s):  
F. S. Nworie ◽  
S. O. Ngele ◽  
J. C. Onah

Metal ions present in waste samples, industrial effluents, acid mines and other aqueous media constitute a serious challenge in different human activities. Solvent extraction a technique for preconcentration, separation and identification of trace amount of metal ions coupled with multivariate chemometric technique was used for the determination of Fe(II) and Cr(III) from solutions in the presence of bis(salicylidene)ethylenediamine (SALEN). The influence of main extraction variables affecting the extraction efficiency was simultaneously studied and regression model equations illustrating the relationship between variables predicted. The extraction parameters (time of extraction, acid concentration, ligand concentration, temperature and metal concentration) were optimized using experimental designs with the contributions of the various parameters to extraction of the metal ions bound to the complexone evaluated using SPSS19.0 software. The statistically determined simulated models for the parameters were R2 = 0.946, 0.727, 0.793, 0.53, 0.53, 1.000 and F- values of 70.400, 13. 285, 15.348, 4.646 and 2.569×105 respectively for time of extraction, acid concentration, ligand concentration, temperature and metal concentration for Cr (III). For Fe (II), R2 = 0.243, 0.371, 0.519, 0.446, 1.000 and F-values of 0.964, 2.953, 4.310, 3.216 and 2.516×105 for time of extraction, acid concentration, ligand concentration, temperature and metal concentration respectively. The level of significance of the models as predicted was both lower than 5% making it feasible, efficient, reproducible and accurate. This means that metal ions at the conditions stated could be removed from waste samples, industrial effluents, acid mines and other aqueous media with extension in industrial scale application.


Sign in / Sign up

Export Citation Format

Share Document