Degradation of Amaranth azo dye in water by heterogeneous photo-Fenton process using FeWO4 catalyst prepared by microwave irradiation

2015 ◽  
Vol 73 (1) ◽  
pp. 88-94 ◽  
Author(s):  
Eric da Cruz Severo ◽  
Chayene Gonçalves Anchieta ◽  
Vitória Segabinazzi Foletto ◽  
Raquel Cristine Kuhn ◽  
Gabriela Carvalho Collazzo ◽  
...  

FeWO4 particles were synthesized by a simple, rapid and facile microwave technique and their catalytic properties in heterogeneous photo-Fenton reaction were evaluated. This material was employed in the degradation of Amaranth azo dye. Individual and interactive effects of operational parameters such as pH, dye concentration and H2O2 dosage on the decolorization efficiency of Amaranth dye were evaluated by 23 central composite design. According to characterization techniques, a porous material and a well-crystallized phase of FeWO4 oxide were obtained. Regarding the photo-Fenton reaction assays, up to 97% color and 58% organic carbon removal were achieved in the best experimental conditions. In addition, the photo-Fenton process maintained treatment efficiency over five catalyst reuse cycles to indicate the durability of the FeWO4 catalyst. In summary, the results reveal that the synthesized FeWO4 material is a promising catalyst for wastewater treatment by heterogeneous photo-Fenton process.

2015 ◽  
Vol 43 (2) ◽  
pp. 97-101 ◽  
Author(s):  
Dheeaa Al Deen Atallah Aljubourya ◽  
Puganeshwary Palaniandy ◽  
Hamidi Bin Abdul Aziz ◽  
Shaik Feroz

AbstractThis study was carried out to compare the performance of different oxidation processes, such as solar photo-Fenton reaction, solar photocatalysis by TiO2, and the combination of the two for the treatment of petroleum wastewater from Sohar Oil Refinery by a central composite design with response surface methodology. The degradation efficiency was evaluated in terms of chemical oxygen demand (COD) and total organic carbon (TOC) reductions. Solar photocatalysis by the TiO2/Fenton method improved the performance of the photocatalyst at neutral pH for petroleum wastewater without the need to adjust the pH during this treatment. Under acidic conditions, the solar photo-Fenton process is more efficient than solar TiO2photocatalysis while it is less efficient under alkaline conditions. The TiO2dosage and pH are the two main factors that improved the TOC and COD reductions in the solar photocatalysis using combined TiO2/Fenton and the solar TiO2photocatalysis processes while the pH and H2O2concentration are the two key factors that affect the solar photo-Fenton process.


Author(s):  
Bárbara Machado Zimmermann ◽  
Enrique Chaves Peres ◽  
Guilherme Luiz Dotto ◽  
Edson Luiz Foletto

In this work, an iron-rich bentonite was thermally modified at 200 oC and posteriorly used as a heterogeneous catalyst in the decolorization and degradation of methylene blue dye (MB) by photo-Fenton reaction under visible irradiation. The variables such as catalyst concentration and pH were investigated in the reaction system to detect the optimal decolorization conditions using the response surface methodology (RSM) coupled with Central Composite Design (CCD). Photodegradation of MB was analyzed by LC-MS technique. The results indicated that the optimal conditions to obtain 94% of MB decolorization efficiency were pH = 2.4 and catalyst mass = 0.02 g. It was also possible to verify that the simultaneous combination of catalyst, hydrogen peroxide and visible light in the reaction medium was primordial for the increasing MB decolorization efficiency. MB degradation occurred partially at 180 min of photo-Fenton reaction, since the presence of dye in the solution was reduced, leading to its transformation into different intermediate products. Therefore, the catalyst used in this work has demonstrated a great potential for the degradation of cationic dye, allowing its use in advanced oxidation processes


2013 ◽  
Vol 699 ◽  
pp. 747-752 ◽  
Author(s):  
Shan Ping Li ◽  
Xiang Ru Ma ◽  
Xiao Hong Cao ◽  
Yan Wen Dong

Oxidation of nitenpyram in aqueous media by electro-Fenton process using carbon/polytetrafluoroethylene (C/PTFE) O2-fed cathode has been studied in this article. ABO3 perovskite was used in electrode as catalyst of improving Fenton reaction efficiency. And the parameters for nitenpyram degradation with the electrode were determined by Central Composite Design-Response Surface Methodology. Current intensity 0.35A and pH 3.34 provided the optimum catalytic degradation. Furthermore, the main degradation intermediates formed during electro-Fenton oxidation treatment were studied with liquid chromatography and mass spectroscopy (LC-MS) method. The main aromatic intermediates of electro-Fenton reaction were allowed to compose a complete mineralization pathway.


Author(s):  
Vanessa Ribeiro Urbano ◽  
Milena Guedes Maniero ◽  
José Roberto Guimarães ◽  
Luis J. del Valle ◽  
Montserrat Pérez-Moya

Sulfaquinoxaline (SQX) has been detected in environmental water samples, where its side effects are still unknown. To the best of our knowledge, its oxidation by Fenton and photo-Fenton processes has not been previously reported. In this study, SQX oxidation, mineralization, and toxicity (Escherichia coli and Staphylococcus aureus bacteria) were evaluated at two different setups: laboratory bench (2 L) and pilot plant (15 L). The experimental design was used to assess the influence of the presence or absence of radiation source, as well as different H2O2 concentrations (94.1 to 261.9 mg L−1). The experimental conditions of both setups were: SQX = 25 mg L−1, Fe(II) = 10 mg L−1, pH 2.8 ± 0.1. Fenton and photo-Fenton were suitable for SQX oxidation and experiments resulted in higher SQX mineralization than reported in the literature. For both setups, the best process was the photo-Fenton (178.0 mg L−1 H2O2), for which over 90% of SQX was removed, over 50% mineralization, and bacterial growth inhibition less than 13%. In both set-ups, the presence or absence of radiation was equally important for sulfaquinoxaline oxidation; however, the degradation rates at the pilot plant were between two to four times higher than the obtained at the laboratory bench.


1999 ◽  
Vol 40 (1) ◽  
pp. 183-190 ◽  
Author(s):  
N. H. Ince ◽  
G. Tezcanlı

Treatability of textile dye-bath effluents by advanced oxidation with Fenton and Fenton-like reagents (FeII/H2O2 and FeIII/H2O2), in the presence and absence of UV light was investigated, using a reactive azo-dye (Procion Red HE7B), and typical dye bath constituents. Under the experimental conditions employed, it was found that with 20 min UV irradiation, complete color removal and 79% total organic carbon degradation is possible, when the system is operated at pH=3, and with a H2O2/Fe(II) molar ratio of 20:1. The increased dissolved solids content of the treated solution implies the necessity of an appropriate membrane system to make the effluent reusable in the dye/wash processes.


2012 ◽  
Vol 15 (2) ◽  
Author(s):  
Mohammad Hossein Habibi ◽  
Maryam Mikhak

AbstractNanostructured zinc titanate (NZT) was synthesized in high yield via a one-step and template-free sol-gel route. The prepared nanocomposite exhibited good size uniformity and regularity. The enhanced photocatalytic activity of the NZT was evaluated in the degradation and mineralization of Indocorn Brilliant Red (M5B) under metal halide lamp irradiation. The effects of different parameters such as pH of the solution, and initial dye concentration on photodegradation of M5B were analyzed. The degradation of M5B follows pseudo-first order kinetics according to the Langmuir-Hinshelwood model. The experimental results showed that the initial concentration of azo dye in the dye mixture greatly affected the degradation efficiency. At M5B concentrations of 10 mg/L, the optimum conditions for the highest degradation efficiency (94%) of azo dye were a photocatalyst dosage of 0.01 g/L and an initial solution pH of 9. This study provided new insight into the design and preparation of nanomaterial demonstrated an excellent ability to remove organic pollutants in wastewater.


Author(s):  
Chunwei Yang ◽  
Dong Wang ◽  
Qian Tang ◽  
Yuwei Sun

AbstractA novel internal circulation batch reactor (ICBR) was utilized to treat an azo dye pollutant methyl orange (MO) solution by the Electro-Fenton process, with graphite rods as the anodes and metal processing waste iron shavings as the cathodes. The MO decoloration efficiency reached 98.6 % for 0.08 g L


Sign in / Sign up

Export Citation Format

Share Document