Adsorptive removal of PPCPs by biomorphic HAP templated from cotton

2016 ◽  
Vol 74 (1) ◽  
pp. 276-286 ◽  
Author(s):  
Bin Huang ◽  
Dan Xiong ◽  
Tingting Zhao ◽  
Huan He ◽  
Xuejun Pan

Biomorphic nano-hydroxyapatite (HAP) was fabricated by a co-precipitation method using cotton as bio-templates and employed in adsorptive removal of ofloxacin (OFL) and triclosan (TCS) that are two representative pharmaceuticals and personal care products (PPCPs). The surface area and porosity, crystal phase, functional group, morphology and micro-structure of the synthesized HAP were characterized by Brunauer–Emmett–Teller isotherm, X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron macroscopic and transmission electron microscopy. The effects of initial pH, ionic strength, initial concentration, contact time and temperature on the removal of PPCPs were studied in a batch experiment. The adsorption of OFL and TCS was rapid and almost accomplished within 50 min. Kinetic studies indicated that the adsorption process of OFL and TCS followed the pseudo-first-order and pseudo-second-order models, respectively. The Freundlich isotherm described the OFL adsorption process well but the adsorption of TCS fitted the Langmuir isotherm better. Thermodynamics and isotherm parameters suggested that both OFL and TCS adsorption were feasible and spontaneous. Hydrogen bond and Lewis acid–base reaction may be the dominating adsorption mechanism of OFL and TCS, respectively. Compared to other adsorbents, biomorphic HAP is environmentally friendly and has the advantages of high adsorption capacity, exhibiting potential application for PPCPs removal.

2017 ◽  
Vol 2 (1) ◽  
pp. 13-26
Author(s):  
Tengku Khamanur Azma Tg. Mohd Zamri ◽  
Mimi Sakinah Abd Munaim ◽  
Zularisam Ab Wahid

Natural dye extracted from the rhizome of Curcuma longa L. were applied to bamboo yarns using exhaustion dyeing process. This study investigates the dyeing behaviour of Curcumin; the major color component isolated from rhizomes of Curcuma longa L.on bamboo yarn. Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich isotherm models were used to test the adsorption process of curcumin on bamboo yarn. Comparison of regression coefficient value indicated that the Freundlich isotherm most fitted to the adsorption of curcumin onto bamboo yarn. Furthermore, the kinetics study on this research fitted the pseudo-second order model which indicates that the basis of interaction was chemical adsorption.


2018 ◽  
Vol 16 (3) ◽  
pp. 329 ◽  
Author(s):  
Maya Rahmayanti ◽  
Sri Juari Santosa ◽  
Sutarno Sutarno

Salicylic acid-modified magnetite (Mag-SA) and gallic acid-modified magnetite (Mag-GA) particles were prepared by co-precipitation procedure. Characterization results showed the interaction that occurs between the surface of magnetite with salicylic acid (Mag-SA) and gallic acid (Mag-GA) was through hydrogen bonding. Adsorption of [AuCl4]– onto Mag-SA and Mag-GA surfaces as a function of initial pH, contact time, and initial concentration of the [AuCl4]– solution were comparatively investigated. Result showed that the optimum adsorption of [AuCl4]– onto Mag-SA or Mag-GA was found at pH 3. The adsorption process were found to allow the pseudo-second order equation, both for Mag-SA and Mag-GA. The parameters in isotherm adsorption equations conformed to the Langmuir and Freundlich isotherms very well for Mag-GA, but for Mag-SA, only conformed to the Langmuir isotherm very well. The result of this study demonstrate that the ability Mag-GA to adsorb [AuCl4]– higher than Mag-SA.


BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 4430-4453
Author(s):  
Wenqi Li ◽  
Liping Zhang ◽  
Ying Guan ◽  
Zhihan Tong ◽  
Xiang Chen ◽  
...  

Biochar derived from Tetrapanax papyriferum petioles at different pyrolysis temperatures was used to remove copper from aqueous solution. Abundant porous structures were observed with scanning electron microscopy, and transmission electron microscope images revealed a unique layered nanopore structure. A high pyrolytic temperature resulted in a biochar with a higher surface area, ash content, and mineral element content. The maximum adsorption capacity of T. papyriferum petiole biochar (TBC) was 182 mg/g. The Langmuir adsorption isotherm model and pseudo-second-order kinetics model were most suitable for describing the adsorption process, indicating that adsorption takes place at specific homogeneous sites within the adsorbent. The calculated ΔH° values indicated that the adsorption process was endothermic. The adsorption mechanism for TBC was attributed to precipitation, ion exchange, C-π interactions, and complexation. Thus, the biochar used in this study is a promising environmentally friendly and effective adsorbent for removing Cu2+ ions from an aqueous solution.


2007 ◽  
Vol 95 (5) ◽  
Author(s):  
C. L. Chen ◽  
X. L. Li ◽  
X. K. Wang

Th(IV) adsorption onto oxidized multi-wall carbon nanotubes (MWCNTs) was carried out at 293±2K. The effects of MWCNT concentration, pH, and ionic strength were studied. The results showed that Th(IV) adsorption onto oxidized MWCNTs strongly depended on MWCNT concentration and pH, and was weakly dependent on ionic strength. Oxidized MWCNTs showed a higher Th(IV) adsorption capacity than as-grown MWCNTs. The adsorption process followed pseudo second order kinetics. The Freundlich isotherm model described the data better than the Langmuir model. The adsorption mechanism of Th(IV) may be surface complexation. Oxidized MWCNTs may be a promising candidate for the concentration of Th(IV), or its analogue actinides from large volumes.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 861
Author(s):  
Ling Zhou ◽  
Michal Slaný ◽  
Bingbing Bai ◽  
Weichao Du ◽  
Chengtun Qu ◽  
...  

In this study, hierarchical MgAl-LDH (layered double hydroxide) nanoparticles with a flower-like morphology were prepared under a hydrothermal condition by employing worm-like micelles formed by cetyltrimethylammonium bromide (CTAB) and salicylic acid (SA) as templates. The morphology and structure of the materials were characterized by Brunauer–Emmett–Teller (BET), SEM, and XRD analyses. The performance for the adsorption of sulfonated lignite (SL) was also investigated in detail. FTIR was used to detect the presence of active functional groups and determine whether they play important roles in adsorption. The results showed that the hierarchical MgAl-LDH nanoparticles with a specific surface area of 126.31 m2/g possessed a flower-like morphology and meso–macroporous structures. The adsorption capacity was high—its value was 1014.20 mg/g at a temperature of 298 K and an initial pH = 7, which was higher than traditional MgAl-LDH (86 mg/g). The adsorption process of sulfonated lignite followed the pseudo-second-order kinetics model and conformed to Freundlich isotherm model with a spontaneous exothermic nature. In addition, the hierarchical MgAl-LDH could be regenerated and used, and the adsorption was high after three adsorption cycles. The main adsorption mechanisms were electrostatic attraction and ion exchange between the hierarchical MgAl-LDH and sulfonated lignite.


2015 ◽  
Vol 73 (6) ◽  
pp. 1269-1278 ◽  
Author(s):  
Hejun Gao ◽  
Luanluan Zhang ◽  
Yunwen Liao

A novel adsorbent consisting of polyethyleneimine-modified multi-wall carbon nanotubes (PEI-MWCNTs) was synthesized by grafting PEI on the carboxyl MWCNTs. The surface properties of the PEI-MWCNTs were measured by scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared, and zeta potential. The adsorption behavior of the PEI-MWCNTs was investigated using sunset yellow FCF as adsorbate. The effects of dosage of adsorbent, the initial pH of solution, contact time and temperature on the adsorption capacity were studied. Then, the kinetics and thermodynamics of the adsorption process were further investigated. Experimental results showed that the adsorption kinetics fitted a pseudo-second-order model and the adsorption isotherms agreed well with the Langmuir model. The adsorption process occurred very fast and the adsorption capacity of PEI-MWCNTs was much higher than that of many of the previously reported adsorbents. Additionally, the plausible adsorption mechanism was discussed.


2020 ◽  
Vol 81 (1) ◽  
pp. 91-101
Author(s):  
Yi Yan ◽  
Shuai Yang ◽  
Feng Jiang ◽  
Yuwei Luo ◽  
Hejun Gao ◽  
...  

Abstract The sheet-like adsorbent of the eggshell wastes was prepared by the thermal hydrolysis method. The structure of the adsorbent was characterized by scanning electron microscope, Brunauer-Emmett-Teller, X-ray diffraction, transmission electron microscope, and X-ray photoelectron spectrometer. The adsorption capacity was investigated in a Pb2+ solution. The effects of initial pH, salt concentration, contact time, and adsorbate concentration on the adsorption of lead ions were investigated in detail. The morphology of the adsorbent was sheet-like microspheres. Zinc selenide/zinc oxide could be uniformly loaded onto the eggshell waste surface, which could effectively enhance the specific surface area of the eggshell wastes. The adsorption kinetics and isotherm followed the pseudo-second-order and Langmuir–Freundlich isotherm model, respectively. The synthesized adsorbent showed a maximum lead adsorption capacity of 1,428.78 mg/g at room temperature. Ion-exchange was the main adsorption mechanism.


2021 ◽  
Author(s):  
Ahmed Alharbi ◽  
Ahmad A. Alluhaybi ◽  
Salwa AlReshaidan ◽  
Hany M. Youssef

Abstract In this work, the spinel nanosized MnFe2O4 (18.14 nm) was facilely synthesized through the co-precipitation method to study the removal of Zn(II) ions from aqueous media. The fabricated MnFe2O4 sample was characterized using VSM, XRD, HR-TEM, EDS, FE-SEM, and FT-IR analyses. The principal XRD peaks, which are ascribed to (4 4 0), (3 3 3), (4 2 2), (4 0 0), (2 2 2), (3 1 1), (2 2 0), and (1 1 1) crystal planes, prove the cubic assembly of nanosized manganese ferrite as shown from JCPDS No. 74-2403. The EDS pattern confirmed that the % Wt of Mn, Fe, and O is 24.12, 48.04, and 28.15, respectively. The FE-SEM image confirmed the cubic nature of the surface of MnFe2O4 nanoparticles which have an average size of 110 nm. The saturation magnetization was 65 emu/g. The impacts of initial pH, concentration of Zn(II) ions, contact time, and temperature on the uptake of Zn(II) ions were accurately investigated. The removal of Zn(II) ions is spontaneous, exothermic, and followed the pseudo-second-order model and the Langmuir isotherm. The maximum adsorption capacity equals 330.03 mg/g.


2017 ◽  
Vol 65 (2) ◽  
pp. 131-137 ◽  
Author(s):  
V. N. Narwade ◽  
R. S. Khairnar

Abstract Cobalt radionuclide is one of the prime contaminants generated during operation of pressurized heavy water. The paper reports the study of cobalt adsorption on hydroxyapatite (HAp) nanoceramic. A modified wet chemical precipitation method is used for HAp synthesis. The HAp nano-material is characterized by XRD, FTIR, TG/DTA, AFM, SEM, and EDAX. Experiments are performed in batches to observe the effect of cobalt adsorption on HAp matrix. The adsorption of cobalt on HAp is examined at room temperature. The isotherm and kinetic studies showed that the Freundlich isotherm and pseudo-second order model are the best choices to describe the nature of adsorption.


2020 ◽  
Vol 12 (6) ◽  
pp. 744-749
Author(s):  
Dawei He ◽  
Shasha Li

Magnetic MnFe2O4 nanorods were fabricated by the alcohol-solution combustion–calcination technique. The morphology, microstructure, and composition of as-prepared MnFe2O4 nanorods were characterized using the transmission electron microscopy (TEM), the X-ray diffraction (XRD), the energy dispersive spectroscopy (EDS), and the vibrating sample magnetometer (VSM). Moreover, the magnetic MnFe2O4 nanorods were employed to remove reactive red 2BF (RR-2BF), the experimental results showed the pseudo-second-order kinetics model could be applied to describe the adsorption process of RR-2BF onto MnFe2O4 nanorods in the initial RR-2BF concentrations of 100–400 mg/L, while, the isotherm data of RR-2BF onto MnFe2O4 nanorods could conform to Langmuir model owing to the value of the square deviations, which revealed that, the adsorption of RR-2BF onto MnFe2O4 nanorods was the monolayer adsorption mechanism.


Sign in / Sign up

Export Citation Format

Share Document