Application of oxidized multi-wall carbon nanotubes for Th(IV) adsorption

2007 ◽  
Vol 95 (5) ◽  
Author(s):  
C. L. Chen ◽  
X. L. Li ◽  
X. K. Wang

Th(IV) adsorption onto oxidized multi-wall carbon nanotubes (MWCNTs) was carried out at 293±2K. The effects of MWCNT concentration, pH, and ionic strength were studied. The results showed that Th(IV) adsorption onto oxidized MWCNTs strongly depended on MWCNT concentration and pH, and was weakly dependent on ionic strength. Oxidized MWCNTs showed a higher Th(IV) adsorption capacity than as-grown MWCNTs. The adsorption process followed pseudo second order kinetics. The Freundlich isotherm model described the data better than the Langmuir model. The adsorption mechanism of Th(IV) may be surface complexation. Oxidized MWCNTs may be a promising candidate for the concentration of Th(IV), or its analogue actinides from large volumes.

2011 ◽  
Vol 179-180 ◽  
pp. 1396-1401
Author(s):  
Zhi Biao Feng ◽  
Ren Jiao Han ◽  
Jing Long Wang

The thermodynamics and kinetics properties and mechanism of sorption process were studied for adsorpting tyrosine in aqueous solution with multi-wall carbon nanotubes (MWCNTs), and the adsorption isotherms at different temperatures were determined. The results showed that the adsorption of the tyrosine in aqueous solution obeys well with the Freundlich isotherm, The thermodynamic parameters indicated that the adsorption reaction was a spontaneous, exothermal and decreasing entropy process,and the adsorption process had an obvious physisorption characteristic.The pseudo-second-order equation provided the best correlation for the adsorption process, being in agreement with adsorption as the rate controlling step.


2019 ◽  
Vol 107 (5) ◽  
pp. 377-386 ◽  
Author(s):  
Cansu Endes Yılmaz ◽  
Mahmoud A.A. Aslani ◽  
Ceren Kütahyalı Aslani

Abstract Adsorption of thorium onto nitric acid modified multi-walled carbon nanotubes was investigated by central composite design as a function of contact time, pH, initial thorium concentration and temperature. The results showed that optimum uptake capacity was 65.75±2.23 mg·g−1 with respect to pH=4, initial thorium concentration of 100 mg·L−1, 25 °C and 15 min contact time. Thermodynamic parameters [standard enthalpy (ΔH0), entropy (ΔS0), and free energy (ΔG0)] were calculated, and the results indicated that adsorption was endothermic. Langmuir, Freundlich and Dubinin-Radushkevich isotherms have been investigated in order to characterize the adsorption process in the range of 25–100 mg·L−1 initial thorium concentration. The Freundlich isotherm is the best suited as a model because it has the highest correlation coefficient (R2=0.9485). The pseudo-second order kinetics well defined the adsorption process.


2016 ◽  
Vol 74 (1) ◽  
pp. 276-286 ◽  
Author(s):  
Bin Huang ◽  
Dan Xiong ◽  
Tingting Zhao ◽  
Huan He ◽  
Xuejun Pan

Biomorphic nano-hydroxyapatite (HAP) was fabricated by a co-precipitation method using cotton as bio-templates and employed in adsorptive removal of ofloxacin (OFL) and triclosan (TCS) that are two representative pharmaceuticals and personal care products (PPCPs). The surface area and porosity, crystal phase, functional group, morphology and micro-structure of the synthesized HAP were characterized by Brunauer–Emmett–Teller isotherm, X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron macroscopic and transmission electron microscopy. The effects of initial pH, ionic strength, initial concentration, contact time and temperature on the removal of PPCPs were studied in a batch experiment. The adsorption of OFL and TCS was rapid and almost accomplished within 50 min. Kinetic studies indicated that the adsorption process of OFL and TCS followed the pseudo-first-order and pseudo-second-order models, respectively. The Freundlich isotherm described the OFL adsorption process well but the adsorption of TCS fitted the Langmuir isotherm better. Thermodynamics and isotherm parameters suggested that both OFL and TCS adsorption were feasible and spontaneous. Hydrogen bond and Lewis acid–base reaction may be the dominating adsorption mechanism of OFL and TCS, respectively. Compared to other adsorbents, biomorphic HAP is environmentally friendly and has the advantages of high adsorption capacity, exhibiting potential application for PPCPs removal.


2015 ◽  
Vol 73 (6) ◽  
pp. 1269-1278 ◽  
Author(s):  
Hejun Gao ◽  
Luanluan Zhang ◽  
Yunwen Liao

A novel adsorbent consisting of polyethyleneimine-modified multi-wall carbon nanotubes (PEI-MWCNTs) was synthesized by grafting PEI on the carboxyl MWCNTs. The surface properties of the PEI-MWCNTs were measured by scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared, and zeta potential. The adsorption behavior of the PEI-MWCNTs was investigated using sunset yellow FCF as adsorbate. The effects of dosage of adsorbent, the initial pH of solution, contact time and temperature on the adsorption capacity were studied. Then, the kinetics and thermodynamics of the adsorption process were further investigated. Experimental results showed that the adsorption kinetics fitted a pseudo-second-order model and the adsorption isotherms agreed well with the Langmuir model. The adsorption process occurred very fast and the adsorption capacity of PEI-MWCNTs was much higher than that of many of the previously reported adsorbents. Additionally, the plausible adsorption mechanism was discussed.


2012 ◽  
Vol 18 (4-1) ◽  
pp. 497-508 ◽  
Author(s):  
Hussein Bahrami ◽  
Jaber Safdari ◽  
Ali Moosavian ◽  
Meisam Torab-Mostaedi

In this study, the adsorption of HF gas by three types of activated carbon has been investigated under vacuum condition. The effects of experimental parameters such as initial pressure of the HF gas, contact time and temperature on adsorption process have been investigated. The results showed that the adsorption of the HF gas onto activated carbon increased by increasing initial pressure of gas, while it decreased with increase in temperature. The Freundlich isotherm model fitted the equilibrium data better than the other isotherm models. Using Langmuir isotherm model, the maximum adsorption capacities of the first type, the second type and third type of activated carbon were 226.4, 268.8 and 258.9 mg/g, respectively. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and it was found that the adsorption process followed well pseudo-second-order kinetics. Thermodynamic parameters, the change of free energy (?G?), enthalpy (?H?) and entropy (?S?) of adsorption were calculated at the temperature range of 28-55?C. The results showed that the adsorption of HF on activated carbon is feasible, spontaneous and exothermic.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4318
Author(s):  
Elie Meez ◽  
Abbas Rahdar ◽  
George Z. Kyzas

The threat of the accumulation of heavy metals in wastewater is increasing, due to their abilities to inflict damage to human health, especially in the past decade. The world’s environmental agencies are trying to issue several regulations that allow the management and control of random disposals of heavy metals. Scientific studies have heavily focused on finding suitable materials and techniques for the purification of wastewaters, but most solutions have been rejected due to cost-related issues. Several potential materials for this objective have been found and have been compared to determine the most suitable material for the purification process. Sawdust, among all the materials investigated, shows high potential and very promising results. Sawdust has been shown to have a good structure suitable for water purification processes. Parameters affecting the adsorption mechanism of heavy metals into sawdust have been studied and it has been shown that pH, contact time and several other parameters could play a major role in improving the adsorption process. The adsorption was found to follow the Langmuir or Freundlich isotherm and a pseudo second-order kinetic model, meaning that the type of adsorption was a chemisorption. Sawdust has major advantages to be considered and is one of the most promising materials to solve the wastewater problem.


2014 ◽  
Vol 70 (6) ◽  
pp. 964-971
Author(s):  
Xu Chen ◽  
Zhen-hu Xiong

Magnetic multi-wall carbon nanotubes (M-MWCNTs) were used as an adsorbent for removal of furaltadone from aqueous solutions, and the adsorption behaviors were investigated by varying pH, sorbent amount, sorption time and temperature. The results showed that the adsorption efficiency of furaltadone reached 97% when the dosage of M-MWCNT was 0.45 g · L−1, the pH was 7 and the adsorption time was 150 min. The kinetic data showed that the pseudo-second-order model can fit the adsorption kinetics. The sorption data could be well explained by the Langmuir model under different temperatures. The adsorption process was influenced by both intraparticle diffusion and external mass transfer. The experimental data analysis indicated that the electrostatic attraction and π–π stacking interactions between M-MWCNT and furaltadone might be the adsorption mechanism. Thermodynamic analysis reflected that adsorption of furaltadone on the M-MWCNT was spontaneous and exothermic. Our study showed that M-MWCNTs can be used as a potential adsorbent for removal of furaltadone from water and wastewater.


2012 ◽  
Vol 11 (02) ◽  
pp. 1250019 ◽  
Author(s):  
RAJESH KUMAR ◽  
S. K. JAIN

This study was carried out to evaluate the environmental application of functionalized carbon nanotubes through the experimental removal of strontium (II) from water. The aim was to find the optimal condition for the removal of strontium from water under different conditions such as initial concentration of strontium, contact time and neutral pH. The functionalized multi wall carbon nanotubes (f-MWCNT) were characterized by FT-IR and scanning electron microscopy (SEM). The adsorption isotherms were correlated to Freundlich and Langmuir models and it was found that the adsorption data could be fitted better by Langmuir model than Freundlich one. The kinetic data shows that the adsorption describes well with the pseudo-second order kinetic model. Functionalized MWCNT can be used as good adsorbent for the removal of the strontium ions from polluted water according to results.


2021 ◽  
Vol 348 ◽  
pp. 01016
Author(s):  
Rajaa Bassam ◽  
Marouane El Alouani ◽  
Nabila Jarmouni ◽  
Jabrane Maissara ◽  
Mohammed El Mahi Chbihi ◽  
...  

Heavy metals are the most dangerous inorganic pollutants Due to their bioaccumulation and their nonbiodegradability, for this, several studies have focused on the recovery of these metals from water using different techniques. In this context, our study consists of evaluating an efficient and eco-friendly pathway of competitive recovery of heavy metals (Cd, Cr and As) from aqueous solutions by adsorption using raw rock. This adsorbent was characterized before and after the adsorption process by several techniques. The multi-metals adsorption process in the batch mode was undertaken to evaluate the effect of adsorbent mass, contact time, pH, Temperature, and initial heavy metals concentration. The kinetic data were analyzed using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetic models. According to the modeling of the experimental results, the adsorption kinetics of heavy metals were adapted to the pseudo-second-order model. The adsorption isotherms were evaluated by the Langmuir and Freundlich isotherm models. The experimental isotherm data of heavy metals were better fitted with the Langmuir model rather than Freundlich isotherm models. The maximum experimental adsorption capacities (Qmax) predicted by the Langmuir model are 15.23 mg/g for Cd (II), 17.54 mg/g for Cr (VI) and 16.36 mg/g for As (III). The values of thermodynamic parameters revealed that the heavy metals adsorption was exothermic, favorable, and spontaneous in nature. The desorption process of heavy metals showed that this raw rock had excellent recycling capacity. Based on the results, these untreated clays can be used as inexpensive and environmentally friendly adsorbents to treat water contaminated by heavy metals.


2017 ◽  
Vol 2 (1) ◽  
pp. 13-26
Author(s):  
Tengku Khamanur Azma Tg. Mohd Zamri ◽  
Mimi Sakinah Abd Munaim ◽  
Zularisam Ab Wahid

Natural dye extracted from the rhizome of Curcuma longa L. were applied to bamboo yarns using exhaustion dyeing process. This study investigates the dyeing behaviour of Curcumin; the major color component isolated from rhizomes of Curcuma longa L.on bamboo yarn. Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich isotherm models were used to test the adsorption process of curcumin on bamboo yarn. Comparison of regression coefficient value indicated that the Freundlich isotherm most fitted to the adsorption of curcumin onto bamboo yarn. Furthermore, the kinetics study on this research fitted the pseudo-second order model which indicates that the basis of interaction was chemical adsorption.


Sign in / Sign up

Export Citation Format

Share Document