scholarly journals Methylene blue removal using a low-cost activated carbon adsorbent from tobacco stems: kinetic and equilibrium studies

2017 ◽  
Vol 75 (10) ◽  
pp. 2390-2402 ◽  
Author(s):  
Bellington Mudyawabikwa ◽  
Henry H. Mungondori ◽  
Lilian Tichagwa ◽  
David M. Katwire

The aim of this study was to prepare activated carbon from tobacco stalks using microwave heating. The prepared activated carbon was applied as an adsorbent in methylene blue (MB) removal from water. The optimum conditions for activated carbon preparation were a radiation power of 280 W for a period of 6 minutes after the impregnation of the precursor material with 30% ZnCl2 for 24 hours. The activated carbon yield and iodine number were 49.43% and 1,264.51 mg/g respectively. The activated carbon also had a point of zero charge of 5.81 with an adsorption capacity of 123.45 mg/g for MB. The optimum conditions for MB adsorption were a pH of 6.5 with an adsorbent dosage of 0.2 g/50 mL at 25 °C. The MB adsorption kinetics followed the pseudo second order kinetic model with the intra-particle diffusion model suggesting a two-step adsorption mechanism. The adsorption data also fitted well within the Langmuir adsorption isotherm model. Tobacco stalks can successfully be turned into an economically important product.

2019 ◽  
Vol 6 (9) ◽  
pp. 190523 ◽  
Author(s):  
Lu Luo ◽  
Xi Wu ◽  
Zeliang Li ◽  
Yalan Zhou ◽  
Tingting Chen ◽  
...  

Activated carbon (AC) was successfully prepared from low-cost forestry fir bark (FB) waste using KOH activation method. Morphology and texture properties of ACFB were studied by scanning and high-resolution transmission electron microscopies (SEM and HRTEM), respectively. The resulting fir bark-based activated carbon (ACFB) demonstrated high surface area (1552 m 2 g −1 ) and pore volume (0.84 cm 3 g −1 ), both of which reflect excellent potential adsorption properties of ACFB towards methylene blue (MB). The effect of various factors, such as pH, initial concentration, adsorbent content as well as adsorption duration, was studied individually. Adsorption isotherms of MB were fitted using all three nonlinear models (Freundlich, Langmuir and Tempkin). The best fitting of MB adsorption results was obtained using Freundlich and Temkin. Experimental results showed that kinetics of MB adsorption by our ACFB adsorbent followed pseudo-second-order model. The maximum adsorption capacity obtained was 330 mg g −1 , which indicated that FB is an excellent raw material for low-cost production of AC suitable for cationic dye removal.


2015 ◽  
Vol 69 (7) ◽  
Author(s):  
Mohammad Peydayesh ◽  
Mojgan Isanejad ◽  
Toraj Mohammadi ◽  
Seyed Mohammad Reza Seyed Jafari

AbstractMethylene blue (MB) removal using eco-friendly, cost-effective, and freely available Urtica was investigated. The morphology of the adsorbent surface and the nature of the possible Urtica and MB interactions were examined using SEM analysis and the FTIR technique, respectively. Various factors affecting MB adsorption such as adsorption time, initial MB concentration, temperature, and solution pH were investigated. The adsorption process was analysed using different kinetic models and isotherms. The results showed that the MB adsorption kinetic follows a pseudo-second-order kinetic model and the isotherm data fit the Langmuir isotherm well. Thermodynamic parameters, such as ΔG°, ΔH°, and ΔS°, were also evaluated, and the results indicated that the adsorption process is endothermic and spontaneous in nature. The MB adsorption capacity of Urtica was found to be as high as 101.01 mg g


2018 ◽  
Vol 78 (10) ◽  
pp. 2055-2063
Author(s):  
Asmaa Msaad ◽  
Mounir Belbahloul ◽  
Samir El Hajjaji ◽  
Abdeljalil Zouhri

Abstract In this work, the use of a novel low-cost adsorbent derived from Ziziphus lotus (ZL) and industrial carbon (IC) has been successfully applied to the removal of methylene blue (MB) from aqueous solutions. The efficiency of this material was studied through Lagergren pseudo-first-order and pseudo-second-order kinetic models. The process for the novel activated carbon and the IC were best represented by the pseudo-second-order rate model. Langmuir and Freundlich isotherms were used to describe the sorption equilibrium data. The Langmuir model turned out to be the most adequate and maximum capacities were measured to be 833.33 and 142.85 mg.g−1 for ZL activated carbon and IC from Sigma Aldrich, respectively. The thermodynamic study revealed that the sorption process is spontaneous and endothermic for the two adsorbents. To explain the effectiveness of MB removal, ZL activated carbon was characterized by scanning electron microscopy, Brunauer–Emmett–Teller surface area, X-ray diffraction and Fourier transform infrared spectroscopy.


2012 ◽  
Vol 573-574 ◽  
pp. 68-79
Author(s):  
Hui Zhou ◽  
Yan Fang Feng ◽  
Yong Hong Wu ◽  
Lin Zhang Yang

The aim of this study was to establish an economical and environmentally benign biosorbent for removing synthetic dyes (e.g. methylene blue, MB) from wastewater. The adsorption process of MB onto abandoned mung bean (Vigna radiata L. Wilczek) shell (MBS) was investigated in a batch system. The results showed that a wide range of pH (3.74 to 9.78) was favorable for the adsorption of MB onto MBS. Equilibrium studies indicated that the Langmuir model displayed the best fit for the isothermal adsorption data. The maximum monolayer adsorption capacity (165.92 mg g-1) calculated by the Langmuir equation was higher than that of many previously investigated low-cost bioadsorbents (e.g., peanut hull, wheat straw, etc.). The adsorption process best fitted pseudo-second-order kinetic model. Thermodynamic studies showed that the adsorption process was spontaneously, exothermic and was mainly a physisorption. This study indicates that MBS is a promising, unconventional, affordable and environmentally friendly bio-measure that is easily deployed for removing cationic dyes from wastewater.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Gietu Yirga Abate ◽  
Adugna Nigatu Alene ◽  
Adere Tarekegne Habte ◽  
Desiew Mekuanint Getahun

Abstract Background The release of hazardous synthetic dyes into industrial effluents has emerged as an environmental problem requiring remediation. The present study focused on the preparation of a new and environmentally-friendly material (adsorbent) for the remediation of hazardous dyes from aqueous solution. The low cost adsorbent was prepared from locally available khat (Catha edulis) stem which considered as waste and accumulated on waste disposal areas of Woldia town, Ethiopia. Comprehensive characterization studies were carried out on the bio-adsorbent such as proximate analyses, specific surface area, point of zero charge and FT-IR analysis. Results The proximate analysis shows the prepared adsorbent has very high fixed carbon content (83.65%), which refers to high quality of the adsorbent. The adsorption performance of the prepared activated carbon was optimized by varying operational parameters such as initial dye concentration (10 mg/L), pH (10), dosage (0.5 g), and contact time (60 min). The maximum removal efficiency of the prepared adsorbent at those optimum conditions was 98.8%. The experimental data was tested by most common kinetics and isotherm models. It was observed that the pseudo-second-order kinetic model fits better with good correlation coefficient and the equilibrium data fitted well with the Freundlich isotherm model. Conclusion In summery this study demonstrated that the waste bio sorbent could be employed as an effective and eco-friendly alternative for the cleanup of dye-polluted aqueous system.


2016 ◽  
Vol 73 (11) ◽  
pp. 2713-2721 ◽  
Author(s):  
Guilherme Luiz Dotto ◽  
Lucas Meili ◽  
Ana Karla de Souza Abud ◽  
Eduardo Hiromitsu Tanabe ◽  
Daniel Assumpção Bertuol ◽  
...  

This research was performed to find an alternative, low-cost, competitive, locally available and efficient adsorbent to treat nickel (Ni) containing effluents. For this purpose, several Brazilian agro-wastes like sugarcane bagasse (SCB), passion fruit wastes (PFW), orange peel (OP) and pineapple peel (PP) were compared with an activated carbon (AC). The adsorbents were characterized. Effects of fundamental factors affecting the adsorption were investigated using batch tests. Kinetic and equilibrium studies were performed using conventional models. It was verified that the adsorption was favored at pH of 6.0 for all agro-wastes, being dependent of the Ni speciation, point of zero charge and surface area of the adsorbents. The Ni removal percentage was in the following order: SCB > OP > AC > PFW > PP. From the kinetic viewpoint, the Elovich model was appropriate to fit the Ni adsorption onto SCB, while for the other adsorbents, the pseudo-first-order model was the most suitable. For all adsorbents, the Langmuir model was the more adequate to represent the equilibrium data, being the maximum adsorption capacities of 64.1 mg g−1, 60.7 mg g−1, 63.1 mg g−1, 48.1 mg g−1 and 64.3 mg g−1 for SCB, PFW, OP, PP and AC, respectively. These results indicated that mainly SCB and OP can be used as alternative adsorbents to treat Ni containing effluents.


2020 ◽  
Vol 82 (9) ◽  
pp. 1932-1949
Author(s):  
Mondira Bardhan ◽  
Tamanna Mamun Novera ◽  
Mumtahina Tabassum ◽  
Md. Azharul Islam ◽  
Ali H. Jawad ◽  
...  

Abstract In this study, activated carbon (AC) was prepared from agro-waste betel nut husks (BNH) through the chemical activation method. Different characterization techniques described the physicochemical nature of betel nut husks activated carbon (BNH-AC) through Fourier transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), and pH point of zero charge. Later, the produced AC was used for methylene blue (MB) adsorption via numerous batch experimental parameters: initial concentrations of MB dye (25–250 mg/L), contact time (0.5–24 hours) and initial pH (2–12). Dye adsorption isotherms were also assessed at three temperatures where the maximum adsorption capacity (381.6 mg/g) was found at 30 °C. The adsorption equilibrium data were best suited to the non-linear form of the Freundlich isotherm model. Additionally, non-linear pseudo-second-order kinetic model was better fitted with the experimental value as well. Steady motion of solute particles from the boundary layer to the BNH-AC's surface was the possible reaction dynamics concerning MB adsorption. Thermodynamic study revealed that the adsorption process was spontaneous and exothermic in nature. Saline water emerged as an efficient eluent for the desorption of adsorbed dye on AC. Therefore, the BNH-AC is a very promising and cost-effective adsorbent for MB dye treatment and has high adsorption capacity.


2020 ◽  
Author(s):  
Gietu yirga Abate ◽  
Adugna Nigatu Alene ◽  
Adere Tarekegne Habte ◽  
Desiew Mekuanint Getahun

Abstract Background: The release of hazardous synthetic dyes into industrial effluents has emerged as an environmental problem requiring remediation. The present study focused on the preparation of a new and environmentally-friendly material (adsorbent) for the remediation of hazardous dyes from aqueous solution. The low cost adsorbent was prepared from locally available khat (Catha edulis) stem which considered as waste and accumulated on waste disposal areas of Woldia town, Ethiopia. Comprehensive characterization studies were carried out on the bio-adsorbent such as proximate analyses, specific surface area, point of zero charge and FT-IR analysis. Results: The proximate analysis shows the prepared adsorbent has very high fixed carbon content (83.65%), which refers to high quality of the adsorbent. The adsorption performance of the prepared activated carbon was optimized by varying operational parameters such as initial dye concentration (10 mg/L), pH (10), dosage (0.5 g), and contact time (60 min). The maximum removal efficiency of the prepared adsorbent at those optimum conditions was 98.8%. The experimental data was tested by most common kinetics and isotherm models. It was observed that the pseudo-second-order kinetic model fits better with good correlation coefficient and the equilibrium data fitted well with the Freundlich isotherm model.Conclusion: In summery this study demonstrated that the waste bio sorbent could be employed as an effective and eco-friendly alternative for the cleanup of dye-polluted aqueous system.


2020 ◽  
Author(s):  
Gietu yirga Abate ◽  
Adugna Nigatu Alene ◽  
Adere Tarekegne Habte ◽  
Desiew Mekuanint Getahun

Abstract Background: The release of hazardous synthetic dyes into industrial effluents has emerged as an environmental problem requiring remediation. The present study focused on the preparation of a new and environmentally-friendly material (adsorbent) for the remediation of hazardous dyes from aqueous solution. The low cost adsorbent was prepared from locally available khat (Catha edulis) stem which considered as waste and accumulated on waste disposal areas of Woldia town, Ethiopia. Comprehensive characterization studies were carried out on the bio-adsorbent such as proximate analyses, specific surface area, point of zero charge and FT-IR analysis. Results: The proximate analysis shows the prepared adsorbent has very high fixed carbon content (83.65%), which refers to high quality of the adsorbent. The adsorption performance of the prepared activated carbon was optimized by varying operational parameters such as initial dye concentration (10 mg/L), pH (10), dosage (0.5 g), and contact time (60 min). The maximum removal efficiency of the prepared adsorbent at those optimum conditions was 98.8%. The experimental data was tested by most common kinetics and isotherm models. It was observed that the pseudo-second-order kinetic model fits better with good correlation coefficient and the equilibrium data fitted well with the Freundlich isotherm model.Conclusion: In summery this study demonstrated that the waste bio sorbent could be employed as an effective and eco-friendly alternative for the cleanup of dye-polluted aqueous system.


2020 ◽  
Author(s):  
Gietu yirga Abate ◽  
Adugna Nigatu Alene ◽  
Adere Tarekegne Habte ◽  
Desiew Mekuanint Getahun

Abstract Background: The release of hazardous synthetic dyes into industrial effluents has emerged as an environmental problem requiring remediation. The present study focused on the preparation of a new and environmentally-friendly material (adsorbent) for the remediation of hazardous dyes from aqueous solution. The low cost adsorbent was prepared from locally available khat (Catha edulis) stem which considered as waste and accumulated on waste disposal areas of Woldia town, Ethiopia. Comprehensive characterization studies were carried out on the bio-adsorbent such as proximate analyses, specific surface area, point of zero charge and FT-IR analysis. Results: The proximate analysis shows the prepared adsorbent has very high fixed carbon content (83.65%), which refers to high quality of the adsorbent. The adsorption performance of the prepared activated carbon was optimized by varying operational parameters such as initial dye concentration (10 mg/L), pH (10), dosage (0.5 g), and contact time (60 min). The maximum removal efficiency of the prepared adsorbent at those optimum conditions was 98.8%. The experimental data was tested by most common kinetics and isotherm models. It was observed that the pseudo-second-order kinetic model fits better with good correlation coefficient and the equilibrium data fitted well with the Freundlich isotherm model. Conclusion: In summery this study demonstrated that the waste bio sorbent could be employed as an effective and eco-friendly alternative for the cleanup of dye-polluted aqueous system.


Sign in / Sign up

Export Citation Format

Share Document