Modelling energy costs for different operational strategies of a large water resource recovery facility

2017 ◽  
Vol 75 (9) ◽  
pp. 2139-2148 ◽  
Author(s):  
P. Póvoa ◽  
A. Oehmen ◽  
P. Inocêncio ◽  
J. S. Matos ◽  
A. Frazão

The main objective of this paper is to demonstrate the importance of applying dynamic modelling and real energy prices on a full scale water resource recovery facility (WRRF) for the evaluation of control strategies in terms of energy costs with aeration. The Activated Sludge Model No. 1 (ASM1) was coupled with real energy pricing and a power consumption model and applied as a dynamic simulation case study. The model calibration is based on the STOWA protocol. The case study investigates the importance of providing real energy pricing comparing (i) real energy pricing, (ii) weighted arithmetic mean energy pricing and (iii) arithmetic mean energy pricing. The operational strategies evaluated were (i) old versus new air diffusers, (ii) different DO set-points and (iii) implementation of a carbon removal controller based on nitrate sensor readings. The application in a full scale WRRF of the ASM1 model coupled with real energy costs was successful. Dynamic modelling with real energy pricing instead of constant energy pricing enables the wastewater utility to optimize energy consumption according to the real energy price structure. Specific energy cost allows the identification of time periods with potential for linking WRRF with the electric grid to optimize the treatment costs, satisfying operational goals.

2021 ◽  
pp. 117554
Author(s):  
Maria Faragò ◽  
Anders Damgaard ◽  
Jeanette Agertved Madsen ◽  
Jacob Kragh Andersen ◽  
Dines Thornberg ◽  
...  

2020 ◽  
Vol 81 (8) ◽  
pp. 1766-1777 ◽  
Author(s):  
P. A. Stentoft ◽  
L. Vezzaro ◽  
P. S. Mikkelsen ◽  
M. Grum ◽  
T. Munk-Nielsen ◽  
...  

Abstract An integrated model predictive control (MPC) strategy to control the power consumption and the effluent quality of a water resource recovery facility (WRRF) by utilizing the storage capacity from the sewer system was implemented and put into operation for a 7-day trial period. This price-based MPC reacted to electricity prices and forecasted pollutant loads 24 hours ahead. The large storage capacity available in the sewer system directly upstream from the plant was used to control the incoming loads and, indirectly, the power consumption of the WRRF during dry weather operations. The MPC balances electricity costs and treatment quality based on linear dynamical models and predictions of storage capacity and effluent concentrations. This article first shows the modelling results involved in the design of this MPC. Secondly, results from full-scale MPC operation of the WRRF are shown. The monetary savings of the MPC strategy for the specific plant were quantified around approximately 200 DKK per day when fully exploiting the allowed storage capacity. The developed MPC strategy provides a new option for linking WRRFs to smart grid electricity systems.


2018 ◽  
Vol 2018 ◽  
pp. 1-24 ◽  
Author(s):  
Igor Bashmakov ◽  
Anna Myshak

This paper provides empirical evidence and theoretical grounds to support the existence of energy cost constants, i.e., relatively stable energy costs to income ratios, not only country-wide, but also in major energy end-use sectors. These ratios are similar across different countries at different stages of economic development, but they also depend on the country-specific economy structure and legacy of previous long-standing energy pricing, taxes, and subsidies policies, which it takes time to shift from. The aggregated country-wide energy costs constant (range) is a linear combination of those for sectors weighted by the contributions of respective sectors’ income indicators to either gross output or GDP. Deviation of energy costs shares from the constrained range is possible but limited. The “rule of gravitation” goes: for the whole cycle real energy prices in each sector may grow only as much as energy intensity declines, and inversely promoting energy efficiency can be viewed as a policy, of which the environmental cobenefits will be undermined by rebound effects, unless it is accompanied by rising energy prices.


2019 ◽  
Vol 34 (4) ◽  
pp. 497-504 ◽  
Author(s):  
Matheus Ribeiro Augusto ◽  
Bruno Campos ◽  
Vanessa Silveira Barreto Carvalho ◽  
Herlane Costa Calheiros

Abstract Water Resource Recovery Facility (WRRF) can be source of odorous gases. We analyzed the emission and dispersion of hydrogen sulfide gas (H2S), odor indicator, produced during the anaerobic treatment of wastewaters, using WATER9 and AERMOD models for two distinct events: August 2013 and February-March 2014. Data from two WRRF in Brazil were used to feed the model and a statistical data validation was performed, followed by an evaluation of model results regarding H2S emission and dispersion. Daily peak events and averages over the two periods were calculated. Results show a good performance from the model in comparison to the observations. Moreover, odor plumes typically reached 2-4 km from their sources and they may be strongly affected by atmospheric stability/instability conditions in the events analyzed and, in general, only the residences at the vicinity of WRRF were affected by the pollutant odor. Finally, the methodology presented showed to be feasible and realistic for purposes of WRRF planning and management.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3413
Author(s):  
Giorgio Mannina ◽  
Rosa Alduina ◽  
Luigi Badalucco ◽  
Lorenzo Barbara ◽  
Fanny Claire Capri ◽  
...  

The wastewater sector paradigm is shifting from wastewater treatment to resource recovery. In addition, concerns regarding sustainability during the operation have increased. In this sense, there is a need to break barriers (i.e., social, economic, technological, legal, etc.) for moving forward towards water resource recovery facilities and demonstration case studies can be very effective and insightful. This paper presents a new water resource recovery case study which is part of the Horizon 2020 EU Project “Achieving wider uptake of water-smart solutions—Wider Uptake”. The final aim is to demonstrate the importance of a resource recovery system based on the circular economy concept. The recovery facilities at Palermo University (Italy) are first presented. Afterwards, the resource recovery pilot plants are described. Preliminary results have underlined the great potential of the wastewater treatment plant in terms of resources recovery and the central role of the University in fostering the transition towards circular economy. The fermentation batch test highlighted a volatile fatty acids (VFAs) accumulation suitable for polyhydroxyalkanoates (PHAs) production. The results of static adsorption and desorption tests showed that the highest amount of adsorbed NH4+ was recorded for untreated and HCl-Na treated clinoptilolite.


2016 ◽  
Vol 75 (3) ◽  
pp. 518-529 ◽  
Author(s):  
T. Fernández-Arévalo ◽  
I. Lizarralde ◽  
M. Maiza ◽  
S. Beltrán ◽  
P. Grau ◽  
...  

Given the shift in perception of wastewater treatment plants as water resource recovery facilities, conventional mathematical models need to be updated. The resource recovery perspective should be applied to new processes, technologies and plant layouts. The number and level of models proposed to date give an overview of the complexity of the new plant configurations and provides a wide range of possibilities and process combinations in order to construct plant layouts. This diversity makes the development of standard, modular and flexible tools and model libraries that allow the incorporation of new processes and components in a straightforward way a necessity. In this regard, the plant-wide modelling (PWM) library is a complete model library that includes conventional and advanced technologies and that allows economic and energetic analyses to be carried out in a holistic way. This paper shows the fundamentals of this PWM library that is built upon the above-mentioned premises and the application of the PWM library in three different full-scale case studies.


2017 ◽  
Vol 76 (8) ◽  
pp. 1950-1965 ◽  
Author(s):  
Usman Rehman ◽  
Wim Audenaert ◽  
Youri Amerlinck ◽  
Thomas Maere ◽  
Marina Arnaldos ◽  
...  

Current water resource recovery facility (WRRF) models only consider local concentration variations caused by inadequate mixing to a very limited extent, which often leads to a need for (rigorous) calibration. The main objective of this study is to visualize local impacts of mixing by developing an integrated hydrodynamic-biokinetic model for an aeration compartment of a full-scale WRRF. Such a model is able to predict local variations in concentrations and thus allows judging their importance at a process level. In order to achieve this, full-scale hydrodynamics have been simulated using computational fluid dynamics (CFD) through a detailed description of the gas and liquid phases and validated experimentally. In a second step, full ASM1 biokinetic model was integrated with the CFD model to account for the impact of mixing at the process level. The integrated model was subsequently used to evaluate effects of changing influent and aeration flows on process performance. Regions of poor mixing resulting in non-uniform substrate distributions were observed even in areas commonly assumed to be well-mixed. The concept of concentration distribution plots was introduced to quantify and clearly present spatial variations in local process concentrations. Moreover, the results of the CFD-biokinetic model were concisely compared with a conventional tanks-in-series (TIS) approach. It was found that TIS model needs calibration and a single parameter set does not suffice to describe the system under both dry and wet weather conditions. Finally, it was concluded that local mixing conditions have significant consequences in terms of optimal sensor location, control system design and process evaluation.


PCI Journal ◽  
2015 ◽  
Vol 60 (6) ◽  
pp. 39-50 ◽  
Author(s):  
Brett Tempest ◽  
Clarke Snell ◽  
Thomas Gentry ◽  
Maria Trejo ◽  
Keith Isherwood

Sign in / Sign up

Export Citation Format

Share Document