scholarly journals Novel Route to Obtain Carbon Self-Doped TiO2 Mesoporous Nanoparticles as Efficient Photocatalysts for Environmental Remediation Processes under Visible Light

Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3349 ◽  
Author(s):  
Pablo A. Ochoa Rodríguez ◽  
Tamara B. Benzaquén ◽  
Gina A. Pecchi ◽  
Sandra G. Casuscelli ◽  
Verónica R. Elías ◽  
...  

Titanium dioxide materials were synthesized using two different methods. The samples were characterized by X-ray diffraction (XRD), UV–Visible diffusion reflectance spectroscopy (UV-Vis DR), Raman spectroscopy, N2 adsorption/desorption, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron spectroscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Although both kind of materials were found to have mesoporous structure and anatase crystalline phase, one of them was obtained from a synthesis method that does not involve the use of surfactants, and therefore, does not require calcination at high temperatures. This implies that the synthesized solid was self-doped with carbon species, coming only from the same source used for titanium. Then, the relationship between the presence of these species, the final calcination temperature, and the photocatalytic activity of the solids was studied in terms of the degradation and mineralization of an Acid Orange 7 aqueous solution, under visible radiation. A photosensitizing effect caused by the non-metal presence, that allows the solid to extend its absorption range, was found. Hence, a novel route to prepare C-modified photoactive mesoporous TiO2, simpler and cheaper, where neither a template nor an external carbon source is used, could be performed.

Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


2021 ◽  
Vol 11 (5) ◽  
pp. 706-716
Author(s):  
Nada D. Al-Khthami ◽  
Tariq Altalhi ◽  
Mohammed Alsawat ◽  
Mohamed S. Amin ◽  
Yousef G. Alghamdi ◽  
...  

Different organic pollutants have been remediated photo catalytically by applying perovskite photocatalysts. Atrazine (ATR) is a pesticide commonly detected as a pollutant in drinking, surface and ground water. Herein, FeYO3@rGO heterojunction was synthesized and applied for photooxidation decomposition of ATR. First, FeYO 3nanoparticles (NPs) were prepared via routine sol-gel. After that, FeYO3 NPs were successfully incorporated with different percentages (5, 10, 15 and 20 wt.%) of reduced graphene oxide (rGO) in the synthesis of novel FeYO3@rGO photocatalyst. Morphological, structural, surface, optoelectrical and optical characteristics of constructed materials were identified via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), adsorption/desorption isotherms, diffusive reflectance (DR) spectra, and photoluminescence response (PL). Furthermore, photocatalytic achievement of the constructed materials was evaluated via photooxidative degradation of ATR. Various investigations affirmed the usefulness of rGO incorporation on the advancement of formed photocatalysts. Actually, novel nanocomposite containing rGO (15 wt.%) possessed diminished bandgap energy, as well as magnified visible light absorption. Furthermore, such nanocomposite presented exceptional photocatalytic achievement when exposed to visible light as ATR was perfectly photooxidized over finite amount (1.6 g · L-1) from the optimized photocatalyst when illuminated for 30 min. The advanced photocatalytic performance of constructed heterojunctions could be accredited mainly to depressed recombination amid induced charges. The constructed FeYO3@rGO nanocomposite is labelled as efficient photocatalyst for remediation of herbicides from aquatic environments.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1341 ◽  
Author(s):  
Ruiqi Wang ◽  
Duanyang Li ◽  
Hailong Wang ◽  
Chenglun Liu ◽  
Longjun Xu

S-doped Bi2MoO6 nanosheets were successfully synthesized by a simple hydrothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms, Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), elemental mapping spectroscopy, photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS), and UV-visible diffused reflectance spectra (UV-vis DRS). The photo-electrochemical performance of the samples was investigated via an electrochemical workstation. The S-doped Bi2MoO6 nanosheets exhibited enhanced photocatalytic activity under visible light irradiation. The photo-degradation rate of Rhodamine B (RhB) by S-doped Bi2MoO6 (1 wt%) reached 97% after 60 min, which was higher than that of the pure Bi2MoO6 and other S-doped products. The degradation rate of the recovered S-doped Bi2MoO6 (1 wt%) was still nearly 90% in the third cycle, indicating an excellent stability of the catalyst. The radical-capture experiments confirmed that superoxide radicals (·O2−) and holes (h+) were the main active substances in the photocatalytic degradation of RhB by S-doped Bi2MoO6.


2017 ◽  
Vol 76 (6) ◽  
pp. 1436-1446 ◽  
Author(s):  
Chenmo Wei ◽  
Jing Zhang ◽  
Yongli Zhang ◽  
Gucheng Zhang ◽  
Peng Zhou ◽  
...  

Sulfate radical-based advanced oxidation processes have had considerable attention due to the highly oxidizing function of sulfate radicals (SO4−·) resulting in acceleration of organic pollutants degradation in aqueous environments. A Co-Ni mixed oxide nanocatalyst, which was prepared by the sol-gel method, was employed to activate peroxymonosulfate (PMS, HSO5−) to produce SO4−· with Acid Orange 7 (AO7) selected as a radical probe. The catalyst was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The characterization results indicated that the ingredient of the catalyst had been changed and the amount of surface hydroxyl increased significantly with the addition of Ni. Therefore, it proved that Co-NiOx catalyst was more effective than CoOx to activate PMS. Moreover, ultrasound (US) can increase the degradation rate of AO7 and US/Co-NiOx/PMS system. This study also focused on some synthesis parameters and the system reached the maximum efficiency under the condition when [PMS] = 0.4 mM, [catalyst] = 0.28 g/L, Pus = 200 W. The AO7 removal in these systems follows first order kinetics. Last but not least, quenching studies was conducted which indicated that the amount of hydroxyl radicals (·OH) increases with the increase of initial pH and SO4−· was the primary reactive oxidant for AO7 degradation.


NANO ◽  
2013 ◽  
Vol 08 (05) ◽  
pp. 1350050
Author(s):  
MIN GUAN ◽  
HAI-PENG BI ◽  
ZUYUAN WANG ◽  
SHAOHUA BU ◽  
LING HUANG ◽  
...  

Mesoporous silicas SBA-15 are modified with β-Cyclodextrins (β-CD) by simple grafting method. β-CD functionalized SBA-15 was characterized by Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), nitrogen adsorption–desorption measurements, thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). Furthermore, the applicability of it is investigated through studying the adsorption properties of clenbuterol. It showed better adsorption capacities of clenbuterol than pure SBA-15. β-CD functionalized SBA-15 material has the potential applications in the treatment of clenbuterol contamination in food and environment science.


2006 ◽  
Vol 306-308 ◽  
pp. 1103-1108
Author(s):  
Abdul Hadi ◽  
Iskandar Idris Yaacob

Nanocrystalline CeO2 has been synthesized at room temperature using water-in-oil (w/o) microemulsion technique. The structure and properties of the nanocrystalline CeO2 were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and gas adsorption desorption measurement. XRD results showed the synthesized CeO2 has a face centered cubic structure with crystallite size of about 5.2 nm. TEM observation also indicated the presence of nanometer sized particles of CeO2. Coarser particles were also observed due to agglomeration. Gas adsorption desorption isotherms showed the behavior of fine particles with mesoporous structure.


2012 ◽  
Vol 550-553 ◽  
pp. 383-387 ◽  
Author(s):  
Fu Zhen Zhao ◽  
Wen Qiang Liang ◽  
Sheng Bin Ling ◽  
Yu Qing Wu ◽  
Ai Qing Zhang

A series of CuxCe1-xO2-x/SBA-15/cordierite (x = 0-1) catalysts were prepared. The activity of the catalysts for CO combustion was evaluated. The catalysts were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, and X-ray photoelectron spectroscopy (XPS). Deactivation behavior of the catalysts for the catalytic combustion of CO was investigated. The results show that all of the catalysts retained the SBA-15 mesoporous structure. It is proposed that deactivation of the catalysts is associated with the increase of the Cu+ and the decrease of the Cu2+ in the catalysts.


2013 ◽  
Vol 745-746 ◽  
pp. 685-689
Author(s):  
Jun Yan Wu ◽  
Fei Chen ◽  
Qiang Shen ◽  
Lian Meng Zhang

Antimony-doped tin oxide (ATO) nanoparticles with controlled doping level were prepared by a nonaqueous solution route, using alcohol as the solvent, citric acid as an agent, tin (IV) tetrachloride as tin source and antimony (III) chlorideas as antimony sources. As-synthesized samples were characterized by Thermogravimetric analysis (TGA), powder X-ray diffraction (XRD), transmission electron micrographs (TEM), N2 adsorption-desorption isotherms, and X-ray photoelectron spectroscopy (XPS). The results showed that the content of citric acid was the most important processing parameter which was largely governing the reaction course and the complete incorporation of Sb. When the citric acid to metal mol ratio was 2, the particles were the highly crystallized ATO nanoparticles of about 20nm and the Sb atoms were indeed incorporated into the SnO2 crystal structure (cassiterite SnO2).


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Feng-shan Zhou ◽  
Dai-mei Chen ◽  
Bao-lin Cui ◽  
Wei-heng Wang

Sodium montmorillonite (MMT) was chosen as the carrier; a serial of CdS/TiO2-MMT nanocomposites with enhanced visible-light absorption ability was prepared by hydrothermal synthesis method combination with semiconductor compound modification method. The samples are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and ultraviolet visible (UV-Vis) spectroscopy; the results showed that TiO2and CdS nanoparticles were loaded on the surface of montmorillonite uniformly. N2adsorption-desorption experiment showed that the specific surface area of TiO2/montmorillonite nanocomposite made by this method can reach 200 m2/g and pore-size distribution was from 4 to 6 nm; UV-Vis showed that the recombination of CdS and TiO2enhanced visible-light absorption ability of samples of TiO2/montmorillonite and visible-light absorption ability increase with the increased of the adsorption of CdS.


NANO ◽  
2018 ◽  
Vol 13 (03) ◽  
pp. 1850028 ◽  
Author(s):  
Mengjun Liang ◽  
Zhiyuan Yang ◽  
Ying Mei ◽  
Haoran Zhou ◽  
Shuijin Yang

In this study, the TiO2/Bi4V2O[Formula: see text] nanocomposite photocatalysts were prepared by loading different amount of TiO2 nanoparticles onto the surface of Bi4V2O[Formula: see text] nanospheres via a facile hydrothermal method. Afterwards, the as-synthesized samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), N2 adsorption–desorption isotherms, X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS) and photocurrent techniques. The optimal TiO2/Bi4V2O[Formula: see text] composite with 20[Formula: see text]wt.% TiO2 loading (TB2) exhibited the best photocatalytic activity, which could degrade almost RhB completely within 30[Formula: see text]min under visible light irradiation. The enhanced photocatalytic activity of TiO2/Bi4V2O[Formula: see text] composites for RhB degradation could be mainly ascribed to the efficient charge separation over dye-induced sensitized and the increased specific surface area. Also, the photocatalytic activities of TiO2/Bi4V2O[Formula: see text] for CIP degradation were tested. After five consecutive recycling experiments, the photocatalytic degradation activity of TB2 could still reach 99% which indicated that the catalysts had superior stability. Based on the experimental and bandgap calculations, a possible photocatalytic mechanism of TiO2/Bi4V2O[Formula: see text] for RhB degradation was proposed.


Sign in / Sign up

Export Citation Format

Share Document