scholarly journals Influence of water matrix species on persulfate oxidation of phenol: reaction kinetics and formation of undesired degradation byproducts

2018 ◽  
Vol 2017 (2) ◽  
pp. 340-350 ◽  
Author(s):  
Jie Ma ◽  
Haiyan Li ◽  
Yongqi Yang ◽  
Xuening Li

Abstract The present study explored the influence of Cl−, Br−, CO32−, HCO3−, PO43−, HPO42−, NO3−, SO32− and natural organic matter (NOM) on the reaction kinetics and the formation of undesired degradation byproducts during phenol oxidation by heat-activated persulfate (PS). CO32− and PO43− promoted the phenol degradation, because the hydrolysis of CO32− and PO43− created basic pH conditions which were conducive to enhanced PS oxidation rate. Br− promoted the reaction by reacting with sulfate radicals (SO4•−) to produce bromine radicals that can selectively react with electron-rich phenol. NOM scavenged reactive SO4•−, thus inhibiting the reaction. As a strong reducing agent, SO32− rapidly reduced PS, thus completely suppressing the reaction. HCO3−, HPO42−, Cl−, and NO3− had negligible impact on PS oxidation of phenol. Six intermediates were detected in the no anion control using gas chromatography–mass spectrometry (GC-MS). Various toxic halogenated phenols and halogenated hydroquinones were detected in the treatment containing Cl− and Br−. In contrast, in the treatment containing CO32−, HCO3−, PO43−, HPO42−, and NO3−, no new intermediates were identified except for the intermediates already detected in the control treatment. Based on intermediates identified, reaction pathways for PS oxidation of phenol without anions and in the presence of halides were proposed respectively.

2019 ◽  
Vol 85 (7) ◽  
pp. 16-21
Author(s):  
Liliya R. Mubarakova ◽  
German K. Budnikov

Sultones are cyclic esters of hydroxysulfonic acids, which are formed in the process of sulfonation of α-olefins with sulfur trioxide gas. More stable sultones may be present in the final product — an anionic surfactant — sodium α-olefin sulfonate (AOC-Na). AOC-Na is widely used in the production of household chemicals and cosmetic products, including liquid dishwashing detergents. Sultones are strong skin sensitizers, their level in AOC-Na should be strictly controlled and not exceed 5 ppm. Operational and strict control of the sultone content upon AOC-Na production allows timely adjustment at the stage of hydrolysis, which leads to a more complete disclosure of the sultone cycle with the formation of the corresponding olefin sulfonates and hydroxyalkanesulfonates. We propose a method for determining δ-hexadecansultone in liquid dishwashing detergents and sodium α-olefinsulfonates obtained on the basis of α-olefins of C14 – C16 fractions using GC/MS, which provides shortening of sample preparation and keeps the sensitivity with a detection limit of 0.02 mg/kg. The effect of various weakly polar and non-polar organic solvents used for Sultone extraction from AOC-Na and liquid detergent on liquid extraction based on the dispersion of the extractant in an alcohol/water phase is studied. When selecting the solvent we have shown that the use of diethyl ether provided the best extraction of the analyte. Determination of the analyte extraction recovery was performed using the reaction of hydrolysis of the extracted mixture. We specified the operating mode of the device which provided complete separation of the components of the analyzed compounds including the samples of liquid detergent for dishes being a multicomponent mixture of complex composition.


Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 22
Author(s):  
Natalia S. Brizuela ◽  
Marina Arnez-Arancibia ◽  
Liliana Semorile ◽  
María Ángeles Pozo-Bayón ◽  
Bárbara M. Bravo-Ferrada ◽  
...  

Lactiplantibacillus plantarum strain UNQLp 11 is a lactic acid bacterium with the potential to carry out malolactic fermentation (MLF) in red wines. Recently, the complete genome of UNQLp 11 was sequenced and this strain possesses four loci of the enzyme β-glucosidase. In order to demonstrate that these glucosidase enzymes could be functional under harsh wine conditions, we evaluated the hydrolysis of p-nitrophenyl-β-D-glucopyranoside (p-NPG) in synthetic wine with different ethanol contents (0%, 12%, and 14% v/v) and at different pH values (3.2, 3.5, and 3.8). Then, the hydrolysis of precursor n-octyl β-D-glucopyranoside was analyzed in sterile Pinot Noir wine (containing 14.5% v/v of ethanol, at different pH values) by headspace sorptive extraction gas chromatography-mass spectrometry (HSSE-GC/MS). The hydrolysis of p-NPG showed that β-glucosidase activity is very susceptible to low pH but induced in the presence of high ethanol content. Furthermore, UNQLp 11 was able to release the glycosilated precursor n-octyl, during MLF to a greater extent than a commercial enzyme. In conclusion, UNQLp 11 could improve the aromatic profile of the wine by the release of volatile precursors during MLF.


2011 ◽  
Vol 172 (1) ◽  
pp. 109-121 ◽  
Author(s):  
Hrvoje Kusic ◽  
Igor Peternel ◽  
Sime Ukic ◽  
Natalija Koprivanac ◽  
Tomislav Bolanca ◽  
...  

2017 ◽  
Vol 6 (4) ◽  
pp. 96 ◽  
Author(s):  
Hidetaka Noritomi ◽  
Jumpei Nishigami ◽  
Nobuyuki Endo ◽  
Satoru Kato ◽  
Katsumi Uchiyama

We have found that the organic solvent-resistance of Alpha-chymotrypsin (Alpha-CT) is enhanced by adsorbing Alpha-CT onto bamboo charcoal powder (BCP), which is obtained by pyrolyzing bamboo waste under nitrogen atmosphere, and is markedly dependent on the thermodynamic water activity (aw) in organic solvents. When BCP-adsorbed Alpha-CT was immersed in acetonitrile at an appropriate water activity, it effectively enhanced the transesterification of N-acetyl-L-tyrosine ethyl ester (N-Ac-Tyr-OEt) with n-butanol (BuOH) to produce N-acetyl-L-tyrosine butyl ester (N-Ac-Tyr-OBu), compared to the hydrolysis of N-Ac-Tyr-OEt with water to give N-acetyl-L-tyrosine (N-Ac-Tyr-OH). When the water activity was 0.28, the initial rate of transesterification catalyzed by BCP-adsorbed Alpha-CT was about sixty times greater than that catalyzed by free Alpha-CT. Regarding the reaction selectivity which is defined as a ratio of the initial rate of transesterification to that of hydrolysis, BCP-adsorbed α-CT was much superior to free Alpha-CT. The catalytic activity of BCP-adsorbed Alpha-CT was markedly dependent on the reaction temperature. Furthermore, concerning the thermal stability at 50 oC, the half-life of BCP-adsorbed Alpha-CT exhibited 3.8-fold, compared to that of free Alpha-CT.


2021 ◽  
Author(s):  
Junyan Wei ◽  
Linning Yin ◽  
Ruijuan Qu ◽  
Gadah Al-Basher ◽  
Xiaoxue Pan ◽  
...  

Abstract An in-depth study on the degradation of bisphenol S (BPS) by both single-walled carbon nanotubes and heat activated persulfate (PS) was investigated in detail. The factors like materials dosage, initial substrate concentration, initial pH and water matrix on removal of BPS were evaluated and 10 µM BPS could be completely removed in 90 min under the optimal conditions of [BPS]0: [PS]0 = 1: 100, T = 25 ℃, pH0 = 7.0, [N-SWCNTs] = 20 mg·L− 1. Fast removal of BPS was also obtained when reaction temperature reached 65 ℃ without catalyst. There were 15 intermediates identified in total; and hydroxylation, sulfate addition, carboxylation, the cleavage of S − C bond and polymerization were considered as the main transformation pathways of BPS in both two systems based on LC-MS analysis. The proportion discrepancy of •OH and SO4•− involved in two systems led to different distribution and abundance of observed products. The results of transition state calculation further confirmed the reaction potential of hydroxylation, hydrogen atom abstraction and sulfate addition, and the minimum reaction barriers were 22.20, 25.06 and 13.85 kJ/mol, respectively. The present work firstly reveals the overall transformation behavior of BPS in radicals-triggered PS system by combining experimental and theoretical study.


2016 ◽  
Vol 51 (4) ◽  
pp. 344-356 ◽  
Author(s):  
Hing-Biu Lee ◽  
M. Lewina Svoboda ◽  
Thomas E. Peart ◽  
Shirley Anne Smyth

A microwave-assisted extraction method for the determination of 15 alkyl, aryl, and halogenated phenols in sewage sludge and biosolids samples was developed and optimized. The effects of solvent, temperature, time, moisture content, acid, and number of extractions on the recovery of phenols were evaluated. Results indicated that extraction solvent had the greatest impact on the recovery of all phenols while pH had the largest effect on recovery of hexachlorophene and pentachlorophenol. Wet sludge samples were extracted with acetone-hexane mixture in the presence of glacial acetic acid. The extract was evaporated, acetylated by acetic anhydride and cleaned up by silica gel. For dry sludge samples, an optional procedure for the simultaneous extraction and acetylation of phenols was also proposed. Triclosan (TCS) and the alkyl and aryl phenols in sludge extracts were analyzed by gas chromatography-mass spectrometry (GC-MS) in electron-impact mode while polyhalogenated phenols were analyzed by GC-MS in negative ion chemical ionization mode. Method detection limits were ca. 200 ng/g for nonylphenol, <25 ng/g for TCS and other alkyl and aryl phenols, and <5 ng/g for other halogenated phenols. This method has been applied to the determination of phenolic compounds in over 150 sludge and biosolids samples since 2009.


2016 ◽  
Vol 100 ◽  
pp. 466-475 ◽  
Author(s):  
Bozo Zonja ◽  
Antonio Delgado ◽  
J. Luis Abad ◽  
Sandra Pérez ◽  
Damià Barceló

Sign in / Sign up

Export Citation Format

Share Document