Aerobic co-treatment of landfill leachate and domestic wastewater – are slowly biodegradable organics removed or simply diluted?

2014 ◽  
Vol 70 (12) ◽  
pp. 1941-1947 ◽  
Author(s):  
R. Campos ◽  
F. M. Ferraz ◽  
E. M. Vieira ◽  
J. Povinelli

This study investigated the co-treatment of landfill leachate/domestic wastewater in bench-scale activated sludge (AS) reactors to determine whether the slowly biodegradable organic matter (SBOM) was removed rather than diluted. The AS reactors were loaded with mixtures of raw leachate and leachate that was pretreated by air stripping. The tested volumetric ratios were 0%, 0.2%, 2% and 5%. For all of the tested conditions, the reactors performed better when pretreated leachate was used rather than raw leachate, and the best volumetric ratio was 2%. The following removals were obtained: 97% for the biochemical oxygen demand (BOD5,20), 79% for total suspended solids, 77% for dissolved organic carbon and 84% for soluble chemical oxygen demand. Most of the pretreated leachate SBOM (65%) was removed rather than diluted or adsorbed into the sludge, as confirmed by Fourier transform infrared (FTIR) spectroscopy analyses.

2020 ◽  
Vol 9 (6) ◽  
pp. e183963748
Author(s):  
Rafael Souza Leopoldino Nascimento ◽  
Ludymyla Marcelle Lima Silva ◽  
Lucas Periard ◽  
Anibal da Fonseca Santiago

The technology of microalgae photobioreactors and illuminated by LEDs has been widely studied for the treatment of wastewater. However, sunlight is a free resource and should be taken advantage of. But the question remains whether photobioreactors illuminated by natural (sunlight) light in combination with artificial light can have greater operational stability or greater performance when compared to systems illuminated only by artificial light. In this context, continuous flow photobioreactors illuminated by Light Emitting Diodes (LEDs) combined, or not, with sunlight were operated and had their performance evaluated. The variables analyzed were pH, OD, chemical oxygen demand (COD), chlorophyll - a and total suspended solids. The photobioreactors were effective for removing organic matter, with 75 ± 15% in the photobioreactor illuminated by LED and 65 ± 10% in the photobioreactor illuminated by sunlight and LED. The results showed that the use of combined lighting favors the production of dissolved oxygen and ensures greater operational stability in the removal of carbonaceous organic matter.


2019 ◽  
Vol 6 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Veymar G. Tacias-Pascacio ◽  
Abumalé Cruz-Salomón ◽  
José H. Castañón-González ◽  
Beatriz Torrestiana-Sanchez

Background: Wet coffee processing consists of the removal of the pulp and mucilage of the coffee cherry. This process generates a large amount of acidic wastewater which is very aggressive to the environment because of its high content of recalcitrant organic matter. Therefore, treatment is necessary before discharge to water bodies. Because of this reason, this study aimed to evaluate the organic matter removal efficiency in an Anaerobic Baffled Bioreactor (ABR) coupled to a Microfiltration Membrane (MF) system as a new eco-friendly option in the treatment of wet Coffee Processing Wastewater (CPWW). Methods: Two systems (S1 and S2) were evaluated at Hydraulic Retention Times (HRT) of 59 h and 83 h, respectively. Both systems were operated at mesophilic conditions, at a Transmembrane Pressure (TMP) of 50 kPa during 1800 h. Results: The S2 generated higher organic matter removal efficiency, reaching removal values of turbidity of 98.7%, Chemical Oxygen Demand (COD) of 81%, Total Solids (TS) of 72.6%, Total Suspended Solids (TSS) of 100%, and Total Dissolved Solids (TDS) of 61%, compared with the S1. Conclusion: The S2 represents a new eco-friendly alternative to treat CPWW and reduce its pollutant effect.


2018 ◽  
Vol 78 (9) ◽  
pp. 1879-1892 ◽  
Author(s):  
Md Khalekuzzaman ◽  
Muhammed Alamgir ◽  
Mehedi Hasan ◽  
Md Nahid Hasan

Abstract In this research, a hybrid anaerobic baffled reactor (HABR) configuration was proposed consisting of a front sedimentation chamber and four regular baffled chambers followed by two floated filter media chambers for the treatment of domestic wastewater. Performance comparison of uninsulated and insulated HABRs was carried out operating at warm temperature (18.6–37.6 °C) under variable HRTs (30 h and 20 h). The study suggests that almost similar chemical oxygen demand (91% vs 88%), total suspended solids (90% vs 95%), turbidity (98% vs 97%), and volatile suspended solids (90% vs 93%) removal efficiencies were obtained for uninsulated and insulated HABRs. Higher removal of total nitrogen (TN) of 41%, NH4+-N of 44%, and NO3−-N of 91% were achieved by the insulated HABR compared to TN of 37%, NH4+-N of 36%, and NO3−-N of 84% by the uninsulated HABR, whereas lower PO43− removal efficiency of 17% was found in the insulated HABR compared to 24% in the uninsulated HABR. This indicated insulation increased nitrogen removal efficiencies by 4% for TN, 8% for NH4+-N and 7% for NO3−-N, but decreased PO43−removal efficiency by 7%.


2017 ◽  
Vol 8 (2) ◽  
pp. 234-243 ◽  
Author(s):  
Mohini Verma ◽  
R. Naresh Kumar

Abstract Landfill leachate and municipal wastewater at various ratios (1:20, 1:10, 1:7 and 1:5) were subjected to coagulation and electrocoagulation (EC). Alum was used in conventional coagulation at pH 6 and aluminum plate as electrode was used in EC at a current density of 386 A/m2 with 5 cm inter electrode spacing. Treatment efficiency was assessed from removal of chemical oxygen demand (COD), total suspended solids (TSS), turbidity, ammonia, nitrate and phosphate. At 1:5 ratio of landfill leachate to municipal wastewater, highest COD removal was with 3.8 g/L alum whereas highest turbidity removal was with 3.3 g/L alum during coagulation. EC exhibited almost similar removal efficiency for all the parameters at different ratios tested except for COD which was considerably higher at 1:20 ratio. Aluminum consumption from electrode was 0.7 g/L following EC as compared to 3.8 g/L alum used in coagulation. The amount of sludge produced was found to be higher with EC as compared to coagulation which could be due to the fact that the electrochemical method was performed for a longer duration than conventional coagulation. For minimal sludge generation, EC reaction time should be ∼30 min. Further studies with EC process on costing and sludge generation will help to advance the technology for wastewater treatment.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Teck-Yee Ling ◽  
Chen-Lin Soo ◽  
Jing-Jing Liew ◽  
Lee Nyanti ◽  
Siong-Fong Sim ◽  
...  

The present study evaluated the spatial variations of surface water quality in a tropical river using multivariate statistical techniques, including cluster analysis (CA) and principal component analysis (PCA). Twenty physicochemical parameters were measured at 30 stations along the Batang Baram and its tributaries. The water quality of the Batang Baram was categorized as “slightly polluted” where the chemical oxygen demand and total suspended solids were the most deteriorated parameters. The CA grouped the 30 stations into four clusters which shared similar characteristics within the same cluster, representing the upstream, middle, and downstream regions of the main river and the tributaries from the middle to downstream regions of the river. The PCA has determined a reduced number of six principal components that explained 83.6% of the data set variance. The first PC indicated that the total suspended solids, turbidity, and hydrogen sulphide were the dominant polluting factors which is attributed to the logging activities, followed by the five-day biochemical oxygen demand, total phosphorus, organic nitrogen, and nitrate-nitrogen in the second PC which are related to the discharges from domestic wastewater. The components also imply that logging activities are the major anthropogenic activities responsible for water quality variations in the Batang Baram when compared to the domestic wastewater discharge.


2021 ◽  
Vol 42 (3(SI)) ◽  
pp. 775-781
Author(s):  
M.M. Hanafiah ◽  
◽  
N.I.H.A. Aziz ◽  
A.A. Halim ◽  
L.S. Shamdin ◽  
...  

Aim: In this study, Ipomoea aquatica and Pistia stratiotes were used to remove total suspended solids, chemical oxygen demand and ammoniacal nitrogen (NH3-N) from the landfill leachate collected at Ampar Tenang Closed Landfill (ATCL) site in Dengkil, Selangor, Malaysia. Methodology: The physico-chemical characteristics of landfill leachate (pH, temperature, NH3-N, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, total dissolved solids, total suspended solids, salinity, electrical conductivity and nitrite as well as selected heavy metals were determined before phytoremediation treatment. Results: The physico-chemical properties of leachate samples were found to be lower as compared to the standards set by the government, except for COD (>100 mg l-1). Heavy metals content, Na, Mg and Fe was high in leachate. It was found that the concentrations of NH3-N, COD and TSS in leachate decreased by 57.64%, 26.85% and 62.05% after treatment with Ipomea aquatica, respectively. Whereas, 61%, 32% and 74.7% removal rate was observed for NH3-N, COD and TSS, post-treatment by Pistia stratiotes. One-way ANOVA analysis for Ipomoea aquatica revealed insignificant difference (p>0.05) but for Pistia stratiotes there was a significant difference (p<0.05) in the reduction of TSS, COD and NH3-N concentrations. Interpretation: Based on the findings, Pistia stratiotes was found more effective than Ipomea aquatica for reducing TSS, COD and NH3-N concentrations from landfill leachate.


Separations ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 19
Author(s):  
José Gustavo Ronderos-Lara ◽  
Hugo Saldarriaga-Noreña ◽  
Mario Alfonso Murillo-Tovar ◽  
Laura Alvarez ◽  
Josefina Vergara-Sánchez ◽  
...  

This study evaluated the distribution and potential estrogenic risk of the presence of bisphenol A (BPA), 4-nonylphenol (4NP), naproxen (NPX), ibuprofen (IBU), 17-β-estradiol (E2) and 17-α-ethinylestradiol (EE2) in water and sediments of the Apatlaco river micro-basin (Morelos, Mexico). The concentration of the determined compounds ranged between <LOD to 86.40 ng·L−1 and <LOD to 3.97 ng g−1 in water and sediments, respectively. The Log Kd distribution obtained (from 1.05 to 1.91 L Kg−1) indicates that the compounds tend to be adsorbed in sediments, which is probably due to the hydrophobic interactions confirmed by the significant correlations determined mainly between the concentrations and parameters of total organic carbon (TOC), total suspended solids (TSS), biological oxygen demand (BOD5) and chemical oxygen demand (COD). Of five sites analyzed, four presented estrogenic risk due to the analyzed endocrine-disrupting compounds (EEQE2 > 1 ng·L−1).


2009 ◽  
Vol 60 (2) ◽  
pp. 433-440 ◽  
Author(s):  
Mahmoud Abdel-Shafy Elsheikh

Tannery wastewater is one of the most pollution sources. It can cause environmental problems related to its high organic matter, suspended solids and chromium. Chromium (III) salts are the most widely used chemicals for tanning processes, causing the tannery wastewater to be highly pollutant with chromium. The main objective of this study is to investigate the pre-treatment of an actual Egyptian tannery wastewater using two systems; the first electrolytic system and the second physico-chemical system. The performances of electrolytic system at current of 10, 20, 30 and 40 A were discussed. Poor removal efficiencies of chemical oxygen demand (COD), total suspended solids (TSS), chromium (III), ammonia (NH4+ and sulfide (S2−) were obtained. In the second physico-chemical system, calcium hydroxide was used as a coagulant material for chromium precipitation and plain sedimentation was applied for reducing of COD, biochemical oxygen demand (BOD5) and TSS. The results demonstrate 98.8% removal of chromium, 31% removal of COD, 25.8% removal of BOD5 and 51.2% removal of TSS.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 800
Author(s):  
Giovanna Siracusa ◽  
Qiuyan Yuan ◽  
Ilaria Chicca ◽  
Alessandra Bardi ◽  
Francesco Spennati ◽  
...  

In the present study, an Ascomycete fungal strain, Lambertella sp., isolated from environmental polluted matrices, was tested for the capacity to reduce the contamination and the toxicity of intermediate and old landfill leachates. Batch tests in flasks, under co-metabolic conditions, were performed with two different old leachates, with suspended and immobilized Lambertella sp. biomass, resulting in a soluble chemical oxygen demand depletion of 70% and 45%, after 13 and 30 days, respectively. An intermediate landfill leachate was treated in lab-scale reactors operating in continuous conditions for three months, inoculated with immobilized Lambertella sp. biomass, in absence of co-substrates. The Lambertella sp. depleted the corresponding total organic carbon by 90.2%. The exploitability of the Lambertella sp. strain was evaluated also in terms of reduction of phyto-, cyto-, and mutagenicity of the different Landfill Leachates at the end of the myco-based treatment, resulting in an efficient depletion of leachate clastogenicity.


2021 ◽  
Vol 13 (16) ◽  
pp. 8783
Author(s):  
Paulo Scalize ◽  
Antonio Albuquerque ◽  
Luiz Di Bernardo

The effect of adding alum water treatment residues (WTR) on the methanogenic activity in the digestion of primary domestic wastewater sludge was evaluated through laboratory experiments in sedimentation columns, using total suspended solids (TSS) concentrations from 0.37 to 1.23 g/L. The addition of WTR to primary clarifiers can benefit its effluent water quality in terms of colour, turbidity, chemical oxygen demand (COD), and TSS. However, the presence of WTR can negatively influence the production of methane gas during organic sludge digestion in primary clarifiers, for concentrations of TSS between 14.43 and 25.23 g/L and of VSS between 10.2 and 11.85 g/L. The activity of the Methanothrix sp., curved bacilli, methanococci, and Methanosarcina sp. decreases considerably after 16 days of anaerobic digestion, and methane production seems to only be associated with fluorescent methanogenic bacilli.


Sign in / Sign up

Export Citation Format

Share Document