Highly effective removal of Cu(II) in aqueous solution by using mesoporous TiO2

2019 ◽  
Vol 80 (5) ◽  
pp. 884-891
Author(s):  
Daying Chen ◽  
Nasi Tu ◽  
Changkun Si ◽  
Meilin Yin ◽  
Xiaohui Wang

Abstract Mesoporous TiO2 has been prepared by a brief and simple sol–gel processing and applied for the removal of Cu(II) from aqueous solution. The adsorption behavior of mesoporous TiO2 for Cu(II) was investigated using batch experiments. Results showed that the pseudo-second-order model and Langmuir isotherm were more accurate to describe the kinetics process and adsorption isotherm. Mesoporous TiO2 adsorbent displayed excellent Cu(II) adsorption efficiency (195.52mg g−1). The thermodynamic parameters showed that the adsorption was spontaneous and endothermic. It was also found that mesoporous TiO2 could be used at least seven times without obvious loss of its original adsorption efficiency. Therefore, the obtained mesoporous TiO2 could be employed as an effective and low-cost adsorbent for removal of Cu(II) from contaminated effluents.

2020 ◽  
Vol 38 (9-10) ◽  
pp. 483-501
Author(s):  
Nguyen Thi Huong ◽  
Nguyen Ngoc Son ◽  
Vo Hoang Phuong ◽  
Cong Tien Dung ◽  
Pham Thi Mai Huong ◽  
...  

The Fe3O4/Talc nanocomposite was synthesized by the coprecipitation-ultrasonication method. The reaction was carried out under a inert gas environment. The nanoparticles were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), fourier-transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry techniques (VSM), the surface area of the nanoparticles was determined to be 77.92 m2/g by Brunauer-Emmett-Teller method (BET). The kinetic data showed that the adsorption process fitted with the pseudo-second order model. Batch experiments were carried out to determine the adsorption kinetics and mechanisms of Cr(VI) by Fe3O4/Talc nanocomposite. The adsorption process was found to be highly pH-dependent, which made the material selectively adsorb these metals from aqueous solution. The isotherms of adsorption were also studied using Langmuir and Freundlich equations in linear forms. It is found that the Langmuir equation showed better linear correlation with the experimental data than the Freundlich. The thermodynamics of Cr(VI) adsorption onto the Fe3O4/Talc nanocomposite indicated that the adsorption was exothermic. The reusability study has proven that Fe3O4/Talc nanocomposite can be employed as a low-cost and easy to separate.


2018 ◽  
Vol 77 (5) ◽  
pp. 1313-1323 ◽  
Author(s):  
Jianjun Zhou ◽  
Xionghui Ji ◽  
Xiaohui Zhou ◽  
Jialin Ren ◽  
Yaochi Liu

Abstract A novel magnetic bio-adsorbent (MCIA) was developed, characterized and tested for its Cd(II) removal from aqueous solution. MCIA could be easily separated from the solution after equilibrium adsorption due to its super-paramagnetic property. The functional and magnetic bio-material was an attractive adsorbent for the removal of Cd(II) from aqueous solution owing to the abundant adsorption sites, amino-group and oxygen-containing groups on the surface of Cyclosorus interruptus. The experimental results indicated that the MCIA exhibited excellent adsorption ability and the adsorption process was spontaneous and endothermic. The adsorption isotherm was consistent with the Langmuir model. The adsorption kinetic fitted the pseudo-second-order model very well. The maximum adsorption capacity of Cd(II) onto MCIA was 40.8, 49.4, 54.6 and 56.6 mg/g at 293, 303, 313 and 323 K, respectively. And the MCIA exhibited an excellent reusability and impressive regeneration. Therefore, MCIA could serve as a sustainable, efficient and low-cost magnetic adsorbent for Cd(II) removal from aqueous solution.


Molekul ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 28
Author(s):  
Mohammad Jihad Madiabu ◽  
Joko Untung ◽  
Imas Solihat ◽  
Andi Muhammad Ichzan

The research aims to investigate feasibility eggshells as potential adsorbent to remove copper(II) ions from aqueous solution. Eggshells powder was characterized using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. Effect of copper(II) initial concentration, adsorbent dosage, and contact time have conducted. The optimum adsorption condition obtained when 0.7 g eggshells applied to 50 mg/L copper(II) solution for 50 minutes. The maximum percentage of copper(II) removal was exceeded more than 85%. Langmuir and Freundlich isotherm model were applied to describe the equilibrium adsorption. Copper(II) kinetics sorption process was fitted to pseudo-second order model with a rate constant equal to 0.516 g/mg.min. The results clearly exhibit that eggshells powder can be effectively used to remove copper(II) ions from aqueous solutions.


2016 ◽  
Vol 70 (4) ◽  
pp. 383-390 ◽  
Author(s):  
Nafisa Salem ◽  
Sobhy Yakout

Zirconia powder was synthesized via sol gel method and used for erbium sorption. The adsorption is strongly dependent on pH of the medium where the removal efficiency increases as the pH turns to alkaline range. The process was very fast initially and maximum adsorption was attained within 60 min of contact. Pseudo-second-order model and homogeneous particle diffusion model (HPDM) was found to be the best to correlate the diffusion of erbium into zirconia particles. Adsorption thermodynamic parameters were calculated. Erbium adsorption is an endothermic (?H > 0) and good affinity of erbium ions towards the zirconia (?S > 0).


2012 ◽  
Vol 9 (3) ◽  
pp. 1457-1480 ◽  
Author(s):  
R. Bhaumik ◽  
N. K. Mondal ◽  
B. Das ◽  
P. Roy ◽  
K. C. Pal ◽  
...  

A new medium, eggshell powder has been developed for fluoride removal from aqueous solution. Fluoride adsorption was studied in a batch system where adsorption was found to be pH dependent with maximum removal efficiency at 6.0. The experimental data was more satisfactorily fitted with Langmuir isotherm model. The kinetics and the factor controlling adsorption process fully accepted by pseudo-second-order model were also discussed. Eawas found to be 45.98 kJmol-1by using Arrhenius equation, indicating chemisorption nature of fluoride onto eggshell powder. Thermodynamic study showed spontaneous nature and feasibility of the adsorption process with negative enthalpy (∆H0) value also supported the exothermic nature. Batch experiments were performed to study the applicability of the adsorbent by using fluoride contaminated water collected from affected areas. These results indicate that eggshell powder can be used as an effective, low-cost adsorbent to remove fluoride from aqueous solution as well as groundwater.


2013 ◽  
Vol 65 (1) ◽  
Author(s):  
Norzita Ngadi ◽  
Chin Chiek Ee ◽  
Nor Aida Yusoff

Dyes contain carcinogenic materials which can cause serious hazards to aquatic life and the users of water. Textile industry is the main source of dye wastewater which results in environmental pollution. Many studies have been conducted to investigate the use of low cost adsorbent as an alternative technique for the adsorption of dye. The objective of this study is to determine the potential of eggshell powder as an adsorbent for methylene blue removal and find out the best operating conditions for the color adsorption at laboratory scale. The adsorption of cationic methylene blue from aqueous solution onto the eggshell powder was carried out by varying the operating parameters which were contact time, pH, dosage of eggshell powder and temperature in order to study their effect in adsorption capacity of eggshell powder. The results obtained showed that the best operating condition for removal of methylene blue was at pH 10 (78.98 %) and temperature 50°C (47.37 %) by using 2 g of eggshell powder (57.03 %) with 30 minutes equilibrium time (41.36 %). The kinetic studies indicated that pseudo-second-order model best described the adsorption process.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1786 ◽  
Author(s):  
Liangjun Xia ◽  
Chen Li ◽  
Sijie Zhou ◽  
Zhuan Fu ◽  
Yun Wang ◽  
...  

As a natural polymer, leather and its associated industries are known to be the leading economic sector in many countries. However, the huge amounts of leather waste generated from the leather industry causes severe environmental pollution. Herein, cow leather (CL) powders were prepared using a homemade machine and used as a low-cost adsorbent for the effective removal of reactive dyes from wastewater. The as-prepared CL powders exhibited dot-like, rod-like, and fiber-like morphologies. A Fourier transform infrared analysis and an x-ray diffraction analysis demonstrated that the CL powders retained the main structure of the protein contained in it. In addition, an improvement in thermal stability was also observed for the CL powders. Dye adsorption experiments indicate that the CL powders showed the highly effective removal of C.I. Reactive Red 120 (RR120), C.I. Reactive Yellow 127 (RY127), and C.I. Reactive Blue 222 (RB222) with the adsorption capacity of 167.0, 178.9, and 129.6 mg·g−1, respectively. The Langmuir, pseudo-second order, and intraparticle diffusion models could well depict the adsorption equilibrium and kinetics of CL powders toward the investigated reactive dyes. The as-prepared CL powders can be used as a potential adsorbent in the treatment of dye contaminated wastewater. Future studies will mainly focus on the application of the adsorbed CL powders for the pigment printing of textile materials.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Joshua N. Edokpayi ◽  
Samson O. Alayande ◽  
Ahmed Adetoro ◽  
John O. Odiyo

In this study, the potential for pulverized raw macadamia nut shell (MNS) for the sequestration of methylene blue from aqueous media was assessed. The sorbent was characterized using scanning electron microscopy for surface morphology, functional group analysis was performed with a Fourier-transform infrared spectrometer (FT-IR), and Brunauer–Emmett–Teller (BET) isotherm was used for surface area elucidation. The effects of contact time, sorbent dosage, particle size, pH, and change in a solution matrix were studied. Equilibrium data were fitted using Temkin, Langmuir, and Freundlich adsorption isotherm models. The sorption kinetics was studied using the Lagergren pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. The feasibility of the study was established from the thermodynamic studies. A surface area of 2.763 m2/g was obtained. The equilibrium and kinetics of sorption was best described by the Langmuir and the pseudo-second-order models, respectively. The sorption process was spontaneous (−ΔG0=28.72−31.77 kJ/mol) and endothermic in nature (ΔH0=17.45 kJ/mol). The positive value of ΔS0 (0.15 kJ/molK) implies increased randomness of the sorbate molecules at the surface of the sorbent. This study presents sustainable management of wastewater using MNS as a potential low-cost sorbent for dye decontamination from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document