Preparation of bio-based magnetic adsorbent and application for efficient removal of Cd(II) from water

2018 ◽  
Vol 77 (5) ◽  
pp. 1313-1323 ◽  
Author(s):  
Jianjun Zhou ◽  
Xionghui Ji ◽  
Xiaohui Zhou ◽  
Jialin Ren ◽  
Yaochi Liu

Abstract A novel magnetic bio-adsorbent (MCIA) was developed, characterized and tested for its Cd(II) removal from aqueous solution. MCIA could be easily separated from the solution after equilibrium adsorption due to its super-paramagnetic property. The functional and magnetic bio-material was an attractive adsorbent for the removal of Cd(II) from aqueous solution owing to the abundant adsorption sites, amino-group and oxygen-containing groups on the surface of Cyclosorus interruptus. The experimental results indicated that the MCIA exhibited excellent adsorption ability and the adsorption process was spontaneous and endothermic. The adsorption isotherm was consistent with the Langmuir model. The adsorption kinetic fitted the pseudo-second-order model very well. The maximum adsorption capacity of Cd(II) onto MCIA was 40.8, 49.4, 54.6 and 56.6 mg/g at 293, 303, 313 and 323 K, respectively. And the MCIA exhibited an excellent reusability and impressive regeneration. Therefore, MCIA could serve as a sustainable, efficient and low-cost magnetic adsorbent for Cd(II) removal from aqueous solution.

2021 ◽  
Author(s):  
Yuehui Tan ◽  
Xirui Wan ◽  
Xue Ni ◽  
Le Wang ◽  
Ting Zhou ◽  
...  

Abstract A novel chitosan-modified kiwi branch biochar (CHKB) was successfully fabricated as cut-price modified biochar to remove Cd (II) from wastewater. Characterization experiments with SEM-EDS, FTIR and XPS suggested that CHKB had more cations and surface functional groups compared with the original kiwi biochar (KB). The adsorption experiment results of Cd (II) on CHKB showed that the adsorption isotherms can be described best by the Langmuir model and that the pseudo-second-order model fits the Cd (II) adsorption kinetics well, indicating that the process was monolayer and controlled by chemisorption. CHKB exhibited the Langmuir maximum adsorption capacity of Cd (II) (126.58 mg g-1), however, that of KB is only 4.26 mg g-1. The adsorption ability of CHKB was improved by the increase of the surface area and abundant surface functional groups (-OH, -NH, C=O and so on). And the cation exchange, electrostatic interaction, surface complexation and precipitation were main mechanisms in the sorption of Cd (II) on CHKB. In addition, CHKB can be regenerated and reused for Cd (II) sorption by the eluent of EDTA-2Na. Excellent adsorption performance, low-cost, and environmental-friendly made CHKB become the fantastic adsorbent to remove Cd (II) in wastewater.


2020 ◽  
Vol 38 (9-10) ◽  
pp. 483-501
Author(s):  
Nguyen Thi Huong ◽  
Nguyen Ngoc Son ◽  
Vo Hoang Phuong ◽  
Cong Tien Dung ◽  
Pham Thi Mai Huong ◽  
...  

The Fe3O4/Talc nanocomposite was synthesized by the coprecipitation-ultrasonication method. The reaction was carried out under a inert gas environment. The nanoparticles were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), fourier-transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry techniques (VSM), the surface area of the nanoparticles was determined to be 77.92 m2/g by Brunauer-Emmett-Teller method (BET). The kinetic data showed that the adsorption process fitted with the pseudo-second order model. Batch experiments were carried out to determine the adsorption kinetics and mechanisms of Cr(VI) by Fe3O4/Talc nanocomposite. The adsorption process was found to be highly pH-dependent, which made the material selectively adsorb these metals from aqueous solution. The isotherms of adsorption were also studied using Langmuir and Freundlich equations in linear forms. It is found that the Langmuir equation showed better linear correlation with the experimental data than the Freundlich. The thermodynamics of Cr(VI) adsorption onto the Fe3O4/Talc nanocomposite indicated that the adsorption was exothermic. The reusability study has proven that Fe3O4/Talc nanocomposite can be employed as a low-cost and easy to separate.


2016 ◽  
Vol 17 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Tianli Han ◽  
Xiaoman Zhang ◽  
Xiangqian Fu ◽  
Jinyun Liu

Chitosan nanoparticle (CS NP)-modified MnO2 nanoflakes were presented as a novel adsorbent for fast adsorption of Pb(II) from aqueous solution. Loading dense CS NPs onto mono-dispersive flower-like MnO2 nanostructures reduces the overlap of CS during adsorption, and thus improves the contact of functional adsorption sites on the surface of MnO2 nanoflakes with heavy metal ions. The results show that the removal efficiency of the nanoadsorbents reaches up to 93% in 3 min for Pb(II). In addition, the maximum adsorption capacity, effects of adsorbent dosage and pH value, and the reusability were investigated. The kinetic process and adsorption isotherm fit well with the pseudo-second-order model and Langmuir model, respectively. These findings provide a potential strategy to address the overlap issue of some common nanoadsorbents.


2021 ◽  
pp. 1-12
Author(s):  
Raafia Najam ◽  
Syed Muzaffar Ali Andrabi

Sawdust of willow has been investigated as an adsorbent for the removal of Ni(II), and Cd(II) ions from aqueous solution. Since willow tree is widely grown in almost all parts of Kashmir, it can be a common most easily available, sustainable, low cost adsorbent for the treatment of wastewaters in this part of the world where growing industrialization is affecting water quality like elsewhere in the world. Therefore, it is worthwhile to investigate the potential of sawdust of willow tree as an adsorbent for the removal of Ni(II) and Cd(II) ions from aqueous solution as a first step. Batch experiments were conducted to study the effect of some parameters such as contact time, initial concentration of metal ions, solution pH and temperature. Langmuir and Freundlich models were employed for the mechanistic analysis of experimental data obtained. Results reveal that in our system adsorption follows the Langmuir isotherm. The maximum adsorption capacity of Ni(II) and Cd(II) were found to be 7.98 and 7.11 mg/g respectively at optimum conditions. The pseudo-first-order and pseudo-second-order models were employed for kinetic analysis of adsorption process. The adsorption process follows pseudo-second-order kinetics. The efficacy of the adsorbent in the treatment of effluent from fertilizer factory has been investigated and the results have been found encouraging.


2018 ◽  
Vol 56 (1A) ◽  
pp. 25
Author(s):  
Nguyen Quang Dat

In this paper, we present a recent study in the adsorption of uranium from an aquatic environment by reduced graphene oxide - Cu0.5Ni0.5Fe2O4 ferrite – polyaniline (RGO/CNF/PANI) composite. Uranium concentration was carried out by batch techniques. The effect of pH, contact time, concentration of equilibrium state and reusability on uranium adsorption capacity have been studied. The adsorption process was accomplished within 240 min and could be well described by the pseudo-second-order model. The adsorption isotherm agrees well with the Langmuir model, having a maximum adsorption capacity of 2000 mg/g, at pH = 5 and 25 oC. The RGO/CNF/PANI materials could be a promising absorbent for removing U (VI) in aqueous solution because of their high adsorption capacity and convenient magnetic separation. 


Author(s):  
Farid Abu Shammala ◽  
Barry Chiswell

This article describes a novel and efficient MCTS/GO nanocomposite for the accumulation and removal of a hazardous azo dye (Chrysoidine Y) from its aqueous solutions. Magnetic Chitosan /graphene oxide (MCTS/GO) nanocomposite adsorbent was prepared by wet-spinning technique, was used as accumulation and removal of Chrysoidine Y from aqueous solution. The structure and morphology of MCTS/GO nanocomposites were investigated using transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectroscopy were carried out on the MCTS/GO before the Chrysoidine Y (CY) accumulation experiments. The adsorption kinetics and isotherm studies were conducted under different conditions (pH = 3-7 and CY concentration = 100-400 mg/L) to examine the accumultion efficiency of the MCTS/GO towards CY in aqueous solution. The kinetics data of the adsorption process were analyzed using different kinetic models in order to investigate the adsorption behavior of CY on MCTS/GO. The results showed that the maximum adsorption capacity of the MCTS/GO nanocomposites towards CY can achieve up to ~700 mg/g for the adsorption at 300 mg/L CY. Kinetic data of adsorption process were found to fit pseudo-second order model as compared with pseudo-first-order model. The intraparticle diffusion model suggested that the adsorption process of MCTS/GO towards CY was dominated by the external mass transfer of CY molecules to the surface of MCTS/GO.


2012 ◽  
Vol 9 (3) ◽  
pp. 1457-1480 ◽  
Author(s):  
R. Bhaumik ◽  
N. K. Mondal ◽  
B. Das ◽  
P. Roy ◽  
K. C. Pal ◽  
...  

A new medium, eggshell powder has been developed for fluoride removal from aqueous solution. Fluoride adsorption was studied in a batch system where adsorption was found to be pH dependent with maximum removal efficiency at 6.0. The experimental data was more satisfactorily fitted with Langmuir isotherm model. The kinetics and the factor controlling adsorption process fully accepted by pseudo-second-order model were also discussed. Eawas found to be 45.98 kJmol-1by using Arrhenius equation, indicating chemisorption nature of fluoride onto eggshell powder. Thermodynamic study showed spontaneous nature and feasibility of the adsorption process with negative enthalpy (∆H0) value also supported the exothermic nature. Batch experiments were performed to study the applicability of the adsorbent by using fluoride contaminated water collected from affected areas. These results indicate that eggshell powder can be used as an effective, low-cost adsorbent to remove fluoride from aqueous solution as well as groundwater.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2133 ◽  
Author(s):  
Xuli Li ◽  
Yue Zeng ◽  
Fangyuan Chen ◽  
Teng Wang ◽  
Yixin Li ◽  
...  

Zeolite analcime (EMANA) was synthesized through the hydrothermal method by using carbothermal reduction electrolytic manganese residue (CR-EMR). The structural properties of EMANA and CR-EMR were studied using various characterization techniques. After hydrothermal synthesis, the CR-EMR became super-microporous, and the surface area increased by 4.76 times than before. Among the various synthesized zeolites, 6 h-synthesized EMANA was selected as the best adsorbent for macrolide antibiotics in aqueous solution. The adsorption performance of EMANA on the adsorption capacity was examined by using various experimental parameters, such as contact time (0–24 h), initial concentration (50–300 mg/L), temperature (30–50 °C) and pH (3–13). The experimental results were also analyzed by the Langmuir and Freundlich adsorption models, with the latter obtaining better representation. The adsorption process could be described well by the pseudo-second-order model, even under a low concentration (50 mg/L). This result suggests that the adsorption process of macrolide antibiotics is due to chemisorption. According to the Fourier Transform infrared spectroscopy (FT-IR) results, the adsorption of zeolite was mainly due to its hydroxyl group, which played an important role during the adsorption process. Moreover, EMANA is more suitable for treatment of roxithromycin (ROX) than azithromycin (AZM), because ROX has more adsorption sites for the hydroxyl group.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2218 ◽  
Author(s):  
Carlos Grande-Tovar ◽  
William Vallejo ◽  
Fabio Zuluaga

In this work, we synthesized chitosan grafted-polyacrylic acid (CS-g-PA) through surface-initiated atom transfer radical polymerization (SI-ATRP). We also studied the adsorption process of copper and lead ions onto the CS-g-PA surface. Adsorption equilibrium studies indicated that pH 4.0 was the best pH for the adsorption process and the maximum adsorption capacity over CS-g-PA for Pb2+ ions was 98 mg·g−1 and for Cu2+ it was 164 mg·g−1, while for chitosan alone (CS), the Pb2+ adsorption capacity was only 14.8 mg·g−1 and for Cu2+ it was 140 mg·g−1. Furthermore, the adsorption studies indicated that Langmuir model describes all the experimental data and besides, pseudo-second-order model was suitable to describe kinetic results for the adsorption process, demonstrating a larger kinetic constant of the process was larger for Pb2+ than Cu2+. Compared to other adsorbents reported, CS-g-PA had comparable or even superior adsorbent capacity and besides, all these results suggest that the new CS-g-PA polymers had potential as an adsorbent for hazardous and toxic metal ions produced by different industries.


2019 ◽  
Vol 80 (5) ◽  
pp. 884-891
Author(s):  
Daying Chen ◽  
Nasi Tu ◽  
Changkun Si ◽  
Meilin Yin ◽  
Xiaohui Wang

Abstract Mesoporous TiO2 has been prepared by a brief and simple sol–gel processing and applied for the removal of Cu(II) from aqueous solution. The adsorption behavior of mesoporous TiO2 for Cu(II) was investigated using batch experiments. Results showed that the pseudo-second-order model and Langmuir isotherm were more accurate to describe the kinetics process and adsorption isotherm. Mesoporous TiO2 adsorbent displayed excellent Cu(II) adsorption efficiency (195.52mg g−1). The thermodynamic parameters showed that the adsorption was spontaneous and endothermic. It was also found that mesoporous TiO2 could be used at least seven times without obvious loss of its original adsorption efficiency. Therefore, the obtained mesoporous TiO2 could be employed as an effective and low-cost adsorbent for removal of Cu(II) from contaminated effluents.


Sign in / Sign up

Export Citation Format

Share Document