scholarly journals Cost-effective removal of COD in the pre-treatment of wastewater from the paper industry

2019 ◽  
Vol 81 (7) ◽  
pp. 1345-1353 ◽  
Author(s):  
Joanna Boguniewicz-Zablocka ◽  
Iwona Klosok-Bazan ◽  
Vincenzo Naddeo ◽  
Clara A. Mozejko

Abstract The present paper reveals results of research for cost-effective removal of chemical oxygen demand (COD) contained in industrial paper mill effluent. Not only process efficiency but also wastewater treatment costs are discussed. Different pre-treatment processes are applied aiming to investigate the COD removal before discharge to the municipal sewage network. The objective of this paper is to find the optimal operating conditions for the coagulation process. The effects of key operational parameters, including the type of coagulant, initial pH, temperature and coagulant dose, on COD percentage removal were investigated. The laboratory experiments confirmed the high efficiency of chemically enhanced mechanical treatment towards COD. The data obtained show that even low dose of chemicals provides sufficient COD reduction. The initial pH of the wastewater had a significant impact on the COD removal. Under the optimal operational conditions (pH = 7.5, T = 18 °C) the treatment of wastewater from paper industries by coagulation has led to a reduction of 70% COD for wastewater discharged. In terms of the investigated paper industry wastewater, polyaluminium chloride appears to be most suitable for treatment of high COD concentration. However, in an economic evaluation of requirements for wastewater treatment, operating costs and associated saving were such that PAX was more favourable.

Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 461
Author(s):  
Fu Yang ◽  
Zhengkun Huang ◽  
Jun Huang ◽  
Chongde Wu ◽  
Rongqing Zhou ◽  
...  

Ultrafiltration is a promising, environment-friendly alternative to the current physicochemical-based tannery wastewater treatment. In this work, ultrafiltration was employed to treat the tanning wastewater as an upstream process of the Zero Liquid Discharge (ZLD) system in the leather industry. The filtration efficiency and fouling behaviors were analyzed to assess the impact of membrane material and operating conditions (shear rate on the membrane surface and transmembrane pressure). The models of resistance-in-series, fouling propensity, and pore blocking were used to provide a comprehensive analysis of such a process. The results show that the process efficiency is strongly dependent on the operating conditions, while the membranes of either PES or PVDF showed similar filtration performance and fouling behavior. Reversible resistance was the main obstacle for such process. Cake formation was the main pore blocking mechanism during such process, which was independent on the operating conditions and membrane materials. The increase in shear rate significantly increased the steady-state permeation flux, thus, the filtration efficiency was improved, which resulted from both the reduction in reversible resistance and the slow-down of fouling layer accumulate rate. This is the first time that the fouling behaviors of tanning wastewater ultrafiltration were comprehensively evaluated, thus providing crucial guidance for further scientific investigation and industrial application.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1026
Author(s):  
Javier Tejera ◽  
Antonio Gascó ◽  
Daphne Hermosilla ◽  
Víctor Alonso-Gomez ◽  
Carlos Negro ◽  
...  

The objective of this trial was to assess the application of UVA-LED technology as an alternative source of irradiation for photo-Fenton processes, aiming to reduce treatment costs and provide a feasible treatment for landfill leachate. An optimized combination of coagulation with ferric chloride followed by photo-Fenton treatment of landfill leachate was optimized. Three different radiation sources were tested, namely, two conventional high-pressure mercury-vapor immersion lamps (100 W and 450 W) and a custom-designed 8 W 365 nm UVA-LED lamp. The proposed treatment combination resulted in very efficient degradation of landfill leachate (COD removal = 90%). The coagulation pre-treatment removed about 70% of the COD and provided the necessary amount of iron for the subsequent photo-Fenton treatment, and it further favored this process by acidifying the solution to an optimum initial pH of 2.8. The 90% removal of color improved the penetration of radiation into the medium and by extension improved treatment efficiency. The faster the Fenton reactions were, as determined by the stoichiometric optimum set-up reaction condition of [H2O2]0/COD0 = 2.125, the better were the treatment results in terms of COD removal and biodegradability enhancement because the chances to scavenge oxidant agents were limited. The 100 W lamp was the least efficient one in terms of final effluent quality and operational cost figures. UVA-LED technology, assessed as the application of an 8 W 365 nm lamp, provided competitive results in terms of COD removal, biodegradability enhancement, and operational costs (35–55%) when compared to the performance of the 450 W conventional lamp.


2020 ◽  
Vol 202 ◽  
pp. 08007
Author(s):  
Wahyu Zuli Pratiwi ◽  
Hadiyanto Hadiyanto ◽  
Purwanto Purwanto ◽  
Muthi’ah Nur Fadlilah

Microalgae-Microbial Fuel Cells (MMFCs) are very popular to be used to treat organic waste. MMFCs can function as an energy-producing wastewater pre-treatment system. Wastewater can provide an adequate supply of nutrients, support the large capacity of biofuel production, and can be integrated with existing wastewater treatment infrastructure. The reduced content of Chemical Oxygen Demand (COD) is one way to measure the efficiency of wastewater treatment. MMFCs reactors are made in the form of two chambers (anode and cathode) both of which are connected by a salt bridge. Tofu wastewater as an anode and Spirulina sp as a cathode. To improve MFCs performance which is to obtain maximum COD removal and electricity generation, nutrient NaHCO3 as the nutrient carbon source for Spirulina sp was varied. The system running phase on 12 days. The results were Spirulina sp treated with MFCs technology has better growth than non-MFCs. The MMFC generated a maximum power density of 21.728 mW/cm2 and achieved 57.37% COD removal. These results showed that the combined process was effective in treating tofu wastewater.


2021 ◽  
Vol 16 (3) ◽  
pp. 673-685
Author(s):  
D. Hadj Bachir ◽  
Hocine Boutoumi ◽  
H. Khalaf ◽  
Pierre Eloy ◽  
J. Schnee ◽  
...  

TiO2 pillared clay was prepared by intercalation of titan polyoxocation into interlamelar space of an Algerian montmorillonite and used for the photocatalytic degradation of the linuron herbicide as a target pollutant in aqueous solution. The TiO2 pillared montmorillonite (Mont-TiO2) was characterized by X-ray photoelectron spectroscopy (XPS), X-Ray diffraction (XRD), X-Ray fluorescence (XRF), scanning electronic microscopy (SEM), thermogravimetry and differential thermal analysis (TG-DTA), Fourier transformed infra-red (FT-IR), specific area and porosity determinations. This physicochemical characterization pointed to successful TiO2 pillaring of the clay. The prepared material has porous structure and exhibit a good thermal stability as indicated by its surface area after calcination by microwave. The effects of operating parameters such as catalyst loading, initial pH of the solution and the pollutant concentration on the photocatalytic efficiency and COD removal  were evaluated. Under initial pH of the solution around seven, pollutant concentration of 10 mg/L and 2.5 g/L of catalyst at room temperature, the degradation efficiency and COD removal of linuron was best then the other operating conditions. It was observed that operational parameters play a major role in the photocatalytic degradation process. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


2003 ◽  
Vol 48 (4) ◽  
pp. 61-68 ◽  
Author(s):  
A. Battimelli ◽  
C. Millet ◽  
J.P. Delgenès ◽  
R. Moletta

The aim of the study was to determine the performances of a combined ozone/anaerobic digestion system for waste activated sludge reduction. The objective was the estimation of the process efficiency and stability when keeping constant influent flow while increasing recycled chemically treated flow. The ozonation step consisted in a partial oxidation (0.16 g O3/g SS) of the anaerobic mesophilic digested sludge. Chemical treatment of digested sludge resulted in a threefold COD solubilization and a decrease of SS of 22%. Some of the advantages of digested sludge ozonation were: deodorization, better settlement and a reduction in viscosity. However there were drawbacks: foaming during ozonation and, at high ozone doses, poorer filterability. The anaerobic digestion was carried out over 6 months with an increasing recycling of ozonated flow. Suspended solids removal rate and COD removal rate were compared with initial operating conditions for the biological reactor and the whole combined process. The optimum recycling rate was 25% with increases of SS removal and COD removal of 54% and 66% respectively when considering the combined process; corresponding to a decrease of the hydraulic retention time from 24 days to 19 days.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2381-2384 ◽  
Author(s):  
C. Polprasert ◽  
S. Kessomboon ◽  
W. Kanjanaprapin

Small-scale and pilot-scale experiments were conducted on pig wastewater treatment in water hyacinth (Eichhornia crassipesl ponds. The main objectives were to evaluate the treatment performance of the water hyacinth ponds and to determine suitable operating conditions. From the experimental results obtained, the optimum organic loading rate was found to be 200 kg COD/(ha.d), while the hydraulic retention times were proposed to be 10-20 days. The % COD removal in the small-scale water hyacinth ponds were 74-93, while for the pilot-scale ponds the % COD removal were 52-72 because of fluctuations in the influent wastewater characteristics and occasional insect attacks on the water hyacinth leaves and stems. Similar results were obtained for N removal. Although the water hyacinth ponds were found to be feasible for pig wastewater treatment, at least one polishing pond in series should be provided to polish the water hyacinth pond effluents before discharging into the environment.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 361-365 ◽  
Author(s):  
D. Abdessemed ◽  
G. Nezzal ◽  
R. Ben Aim

We considered the treatment of domestic wastewater by coagulation–adsorption–ultrafiltration, and a test of adsorption like pre-treatment to the membrane as an alternative for wastewater reclamation and reuse. The performances of two inorganic tubular membranes (M2 and M5 CARBOSEP with 15,000 Da and 10,000 Da MWCO) were studied. Powdered activated carbon was used as adsorbent agent and FeCl3 as a coagulant. Coupling adsorption and ultrafiltration resulted in satisfactory results: the efficiency of COD removal was increased by using PAC compared with results obtained when using only UF membranes.


2011 ◽  
Vol 356-360 ◽  
pp. 1909-1913 ◽  
Author(s):  
Hong Ai Zheng ◽  
Jian She Liu ◽  
Li Li Pan

Owing to toxicity of pharmacy wastewater to microbe, commonly used biodegradation is often limited in application; accordingly exploiting new ways of the wastewater treatment with high efficiency is a hot topic. As a new efficient advanced oxidation, pulsed corona discharge combining with ozone is attracting more and more attention. In this study, a special reactor was designed, in addition, the removal of TOC(Total Organic Carbon) and COD (Chemical Oxygen Demand)of simulant pharmacy wastewater containing hydroquinone (500mg/L) by pulsed corona discharge combining with ozone were investigated . It was showed that the TOC and COD removal (53.8% and 72.3%) by the combined technology was much higher than by using the two techniques in series when all the samples were treated 40mins.The two methods in combination have a synergistic effect. TOC and COD removal could be improved obviously when NaCl feed concentration increased from 0 to1000 mg/L, yet further increase in NaCl feed led to a markedly decrease removal efficiency of TOC and COD.


2008 ◽  
Vol 1082 ◽  
Author(s):  
Michal V. Wolkin ◽  
Raphael Stumpp ◽  
Karl Littau

ABSTRACTRoom-temperature ionic liquids are utilized in a new CO2 capturing fuel cell. The cell is aimed at the efficient and cost effective removal of CO2 emitted from transportation related sources. The CO2 is captured from the atmosphere and is later converted into carbon free synthetic fuel such as methanol. In this study we optimized the operating conditions and the cell electrolytes. With ionic liquids such as 1-Butyl-1-methylpyrrolidinium dicyanamide, the extraction efficiencies increased to ∼20% while simultaneously making the capture process more robust. The ionic liquid approach is also compared to existing aqueous electrochemical CO2 concentration previously proposed by NASA for aerospace applications but with much lower efficiencies.


Sign in / Sign up

Export Citation Format

Share Document