Adsorption of sunset yellow FCF from aqueous solution by chitosan-modified diatomite

2015 ◽  
Vol 72 (10) ◽  
pp. 1861-1868 ◽  
Author(s):  
Y. Z. Zhang ◽  
J. Li ◽  
W. J. Li ◽  
Y. Li

Sunset yellow (SY) FCF is a hazardous azo dye pollutant found in food processing effluent. This study investigates the use of diatomaceous earth with chitosan (DE@C) as a modified adsorbent for the removal of SY from wastewater. Fourier transform infrared spectroscopy results indicate the importance of functional groups during the adsorption of SY. The obtained N2 adsorption–desorption isotherm values accord well with IUPAC type II. Our calculations determined a surface area of 69.68 m2 g−1 for DE@C and an average pore diameter of 4.85 nm. Using response surface methodology, optimized conditions of process variables for dye adsorption were achieved. For the adsorption of SY onto DE@C, this study establishes mathematical models for the optimization of pH, contact time and initial dye concentration. Contact time plays a greater role in the adsorption process than either pH or initial dye concentration. According to the adjusted correlation coefficient (adj-R2 > 0.97), the models used here are suitable for illustration of the adsorption process. Theoretical experimental conditions included a pH of 2.40, initial dye concentration of 113 mg L−1 and 30.37 minutes of contact time. Experimental values for the adsorption rate (92.54%) were close to the values predicted by the models (95.29%).

2017 ◽  
Vol 68 (3) ◽  
pp. 483-486
Author(s):  
Constantin Sorin Ion ◽  
Mihaela Bombos ◽  
Gabriel Vasilievici ◽  
Dorin Bombos

Desulfurisation of atmospheric distillation gasoline and gas oil was performed by adsorption process on Fe/ bentonite. The adsorbent was characterized by determining the adsorption isotherms, specific surface area, pore volume and average pore diameter. Adsorption experiments of atmospheric distillation gasoline and gas oil were performed in continuous system at 280�320oC, 5 atm and volume hourly space velocities of 1�2 h-1. The efficiency of adsorption on Fe / bentonite was better at desulphurisation of gasoline versus gas oil.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Denise S. Cordeiro ◽  
Fernando L. Cassio ◽  
Larissa Ciccotti ◽  
Thiago L. R. Hewer ◽  
Paola Corio ◽  
...  

AbstractPraseodymium doped TiO2 nanoparticles were successfully prepared by the sol–gel method and characterized by X-ray powder diffraction, N2 adsorption–desorption isotherm, and UV–vis spectroscopy. The effects of the dopant on the crystallite size, specific surface area, average pore diameter, pore volume, and bandgap energy were investigated. The photocatalytic activity of the catalysts was evaluated by bisphenol A degradation and mineralization, which is a representative endocrine disruptor. Furthermore, under visible light irradiation the Pr-modified TiO2 photocatalysts exhibited higher photocatalytic efficiency than unmodified TiO2. When praseodymium was loaded (1.0–5.0%) onto the surface of TiO2, the rates of degradation and mineralization were increased 3–5 times.


2020 ◽  
Vol 82 (4) ◽  
pp. 651-662
Author(s):  
Kods Oueslati ◽  
Eder C. Lima ◽  
Fakher Ayachi ◽  
Mariene R. Cunha ◽  
Abdelmottaleb Ben Lamine

Abstract The adsorption isotherms of Reactive Red 120 (RR-120) on Brazilian pine-fruit shell activated carbon, at six temperatures (298, 303, 308, 313, 318 and 323 K) and pH = 6, were determined and interpreted using a double layer model with one energy. A statistical physics treatment established the formulation of this model. Steric and energetic parameters related to the adsorption process, such as the number of adsorbed molecules per site, the receptor sites density and the concentration at half-saturation, have been considered. Thermodynamic potential functions such as entropy, internal energy and Gibbs free enthalpy are analyzed, and the choice of the models is based on assumptions in correlation with experimental conditions. By numerical fitting, the investigated parameters were deduced. The theoretical expressions provide a good understanding and interpretation of the adsorption isotherms at the microscopic level. We believe that our work contributes to new theoretical insights on the dye adsorption in order to know the physical nature of the adsorption process.


2020 ◽  
Vol 81 (1) ◽  
pp. 10-20 ◽  
Author(s):  
T. Reinhardt ◽  
M. Gómez Elordi ◽  
R. Minke ◽  
H. Schönberger ◽  
E. Rott

Abstract Phosphonates are widely used in various industries. It is desirable to remove them before discharging phosphonate-containing wastewater. This study describes a large number of batch experiments with adsorbents that are likely suitable for the removal of phosphonates. For this, adsorption isotherms for four different granular ferric hydroxide (GFH) adsorbents were determined at different pH values in order to identify the best performing material. Additionally, the influence of temperature was studied for this GFH. A maximum loading for nitrilotrimethylphosphonic acid (NTMP) was found to be ∼12 mg P/g with an initial concentration of 1 mg/L NTMP-P and a contact time of 7 days at room temperature. Then, the adsorption of six different phosphonates was investigated as a function of pH. It was shown that GFH could be used to remove all investigated phosphonates from water and, with an increasing pH, the adsorption capacity decreased for all six phosphonates. Finally, five adsorption–desorption cycles were carried out to check the suitability of the material for multiple re-use. Even after five cycles, the adsorption process still performed well.


2004 ◽  
Vol 19 (9) ◽  
pp. 2687-2693 ◽  
Author(s):  
Lay Gaik Teoh ◽  
Jiann Shieh ◽  
Wei Hao Lai ◽  
Min Hsiung Hon

The effects of mesoporous structure on grain growth were investigated in this study. The synthesis was accomplished using block copolymer as the organic template and tungsten chloride as the inorganic precursor. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy, x-ray diffractometry (XRD), transmission electron microscopy, and N2 adsorption/desorption isotherms were used to characterize the microstructures obtained for different temperatures. TGA and XRD analyses demonstrate that copolymers were expelled at 150–250 °C, and mesoporous structure was stable up to 350 °C. The pore diameter and the surface area evaluated from the Barrett-Joyner-Halenda model and Brunauer–Emmett–Teller method indicated that the average pore diameter is 4.11 nm and specific surface area is 191.5 m2/g for 250 °C calcination. Arrhenius equation used to calculate the activation energy for grain growth demonstrates that the activation energy for grain growth was about 38.1 kJ/mol before mesostructure collapse and 11.3 kJ/mol after collapse. These results show evidence of two different mechanisms governing the process of grain growth. The presence of the pore can be related to the obstacle for grain growth.


2013 ◽  
Vol 807-809 ◽  
pp. 704-707
Author(s):  
Li Li Mao ◽  
Hai Zeng Wang ◽  
Qing Wang

The groundwater contaminated with cobalt is attracted more and more concern. In this study, molded magnesium silicate (MMS) was successfully prepared and the physico-chemical properties were determined by N2 adsorption/desorption isotherm and Scanning Electron Microscopy (SEM). Surface area and the average pore size were 333.19 m2·g-1 and 4.442 nm. Adsorption experiments of removal of cobalt ions was investigated as the function of initial concentration, adsorbent dose and adsorption time. Adsorption process was rapid and adsorption equilibriums were achieved soon.


2013 ◽  
Vol 743-744 ◽  
pp. 434-437
Author(s):  
Miao Lv ◽  
Guo Tong Qin ◽  
Wei Wei

TiO2aerogel fibers have been fabricated by electron span combined supercritical drying technique. Polyvinylpyrrolidone (PVP)/TiO2composite fibers are prepared by electrospinning PVP and TiO2precursor Ti (OC4H9)4. TiO2aerogel fibers are obtained by supercritical drying PVP/TiO2composite fibers using ethanol as media. Structural of the aerogel fibers was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and N2adsorption at 77 K. The effect of mass ratio of PVP/TiO2was investigated. SEM shows that pore structure of nanofibers was well developed, with the diameter of nanofibers about 2 μm. N2adsorption/desorption data show that the highest surface area of aerogel fibers reached 241.6 m2/g with the average pore diameter about 10 nm. The aerogel fibers were anatase type TiO2.


Author(s):  
Neha bhadauria ◽  
Arjun Suresh

The present study analyzed the efficiency of a naturally derived fenugreek powder for removal of Congo red dye from the aqueous solution. The flocculation Studies on Congo Red (CR) a hazardous, textile dye onto Fenugreek Powder and its adsorption was analyzed. Fenugreek Powder is Eco-friendly, biodegradable and locally available in the market. The dye adsorption process was performed in different batches at varying pH, dye concentration, adsorbent concentration and contact time to get the best results. The result showed that the maximum removal of dye was 42.4% with 10mg/l of Fenugreek powder at pH 4.


2018 ◽  
Vol 2017 (2) ◽  
pp. 509-515 ◽  
Author(s):  
S. Indah ◽  
D. Helard ◽  
A. Binuwara

Abstract To make the adsorption process more economic and environmental friendly, it is necessary to study desorption and reutilization of the adsorbents. In the present study, the effectiveness of natural pumice in removal of iron from aqueous solution was investigated in several sorption-desorption cycles. The desorption characteristics of previously adsorbed iron ions on natural pumice were tested by various desorbing agents such as HCl, NaOH and aquadest. Among them, HCl showed the highest desorption efficiency (37.89%) with 0.1 M of concentration and 60 min of contact time. The removal efficiency of iron ions in reused natural pumice could be maintained up to 90% in the third cycle of adsorption. The results indicate that although complete desorption was not achieved, natural pumice from Sungai Pasak, West Sumatra, Indonesia, can be sufficiently reused up to three cycles of adsorption-desorption.


2021 ◽  
Author(s):  
Rachida Souidi ◽  
yasmina khane ◽  
Lahcen Belarbi ◽  
Smain Bousalem

Abstract In this work, the sawdust of vine wood (VW) was treated with sulfuric acid and used to adsorb methylene blue (MB) from aqueous solutions via a batch adsorption process. The characteristics of the adsorbent were determined by various analytical techniques such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) and Brunauer−Emmett−Teller (BET) N2 adsorption−desorption isotherms. The effects of various experimental parameters including sulfuric acid concentration, particle size of the adsorbent, pH of the solution, contact time, initial concentration, adsorbent dosage and temperature on adsorption of MB by activating sawdust were systematically investigated. The experimental results showed that the adsorption efficiency was increased with contact time and adsorbent dosage. The maximum removal efficiency was found after 180 min of solid/liquid contact with adsorbent doses of 1 g/l for sawdust. The isotherm and kinetic experimental data for MB adsorption on VW sawdust were best-fitted by Langmuir models and Pseudo-second-order, respectively. The calculated values of the entropy (ΔS°), enthalpy (ΔH°) and Gibbs energy (ΔG°) indicated that the adsorption process was exothermic in nature. These results suggest that the activated sawdust can be employed as a low-cost and environmentally friendly adsorbent for the treatment of wastewaters containing dyes.


Sign in / Sign up

Export Citation Format

Share Document