scholarly journals Bacterial community dynamics in tropical soil after sewage sludge amendment

2020 ◽  
Vol 82 (12) ◽  
pp. 2937-2947
Author(s):  
Bruna C. Lopes ◽  
Raíssa S. Figueiredo ◽  
Juliana C. Araújo ◽  
Antonio T. Matos

Abstract Although the widespread use of sewage sludge in developing countries is common, little is known about how sludge disposal can affect the microbial composition and diversity of tropical soils. We evaluated the effects of the sewage sludges of two types of anaerobic digestors differing, by the biological treatment they have undergone (uplow anaerobic sludge blanket and activated sludge digester), and two different disposal methods (surface and incorporated) on tropical soils. Samples were taken from topsoil (0–10 cm) and analyzed by amplifying the 16S rRNA genes to study the microbial community, and physicochemical analysis was performed concomitantly. The results indicated that, in general, sewage sludge amendment (SSA) significantly changed the tropical soil bacterial community by the sludge type and by application method. Moreover, the redundancy analysis diagram indicates that changes in soil chemical parameters over time due to SSA resulted in changes in the bacterial community's composition, increasing the population responsible for recycling nutrients in the soil.

2004 ◽  
Vol 70 (1) ◽  
pp. 293-300 ◽  
Author(s):  
Nichole A. Broderick ◽  
Kenneth F. Raffa ◽  
Robert M. Goodman ◽  
Jo Handelsman

ABSTRACT Little is known about bacteria associated with Lepidoptera, the large group of mostly phytophagous insects comprising the moths and butterflies. We inventoried the larval midgut bacteria of a polyphagous foliivore, the gypsy moth (Lymantria dispar L.), whose gut is highly alkaline, by using traditional culturing and culture-independent methods. We also examined the effects of diet on microbial composition. Analysis of individual third-instar larvae revealed a high degree of similarity of microbial composition among insects fed on the same diet. DNA sequence analysis indicated that most of the PCR-amplified 16S rRNA genes belong to the γ-Proteobacteria and low G+C gram-positive divisions and that the cultured members represented more than half of the phylotypes identified. Less frequently detected taxa included members of the α-Proteobacterium, Actinobacterium, and Cytophaga/Flexibacter/Bacteroides divisions. The 16S rRNA gene sequences from 7 of the 15 cultured organisms and 8 of the 9 sequences identified by PCR amplification diverged from previously reported bacterial sequences. The microbial composition of midguts differed substantially among larvae feeding on a sterilized artificial diet, aspen, larch, white oak, or willow. 16S rRNA analysis of cultured isolates indicated that an Enterococcus species and culture-independent analysis indicated that an Entbacter sp. were both present in all larvae, regardless of the feeding substrate; the sequences of these two phylotypes varied less than 1% among individual insects. These results provide the first comprehensive description of the microbial diversity of a lepidopteran midgut and demonstrate that the plant species in the diet influences the composition of the gut bacterial community.


2003 ◽  
Vol 69 (4) ◽  
pp. 2116-2125 ◽  
Author(s):  
Leo A. Calvo-Bado ◽  
Tim R. Pettitt ◽  
Nick Parsons ◽  
Geoff M. Petch ◽  
J. Alun W. Morgan ◽  
...  

ABSTRACT An experimental slow sand filter (SSF) was constructed to study the spatial and temporal structure of a bacterial community suppressive to an oomycete plant pathogen, Phytophthora cryptogea. Passage of water through the mature sand column resulted in complete removal of zoospores of the plant pathogen. To monitor global changes in the microbial community, bacterial and fungal numbers were estimated on selective media, direct viable counts of fungal spores were made, and the ATP content was measured. PCR amplification of 16S rRNA genes and denaturing gradient gel electrophoresis (DGGE) were used to study the dynamics of the bacterial community in detail. The top layer (1 cm) of the SSF column was dominated by a variable and active microbial population, whereas the middle (50 cm) and bottom (80 cm) layers were dominated by less active and diverse bacterial populations. The major changes in the microbial populations occurred during the first week of filter operation, and these populations then remained to the end of the study. Spatial and temporal nonlinear mapping of the DGGE bands provided a useful visual representation of the similarities between SSF samples. According to the DGGE profile, less than 2% of the dominating bands present in the SSF column were represented in the culturable population. Sequence analysis of DGGE bands from all depths of the SSF column indicated that a range of bacteria were present, with 16S rRNA gene sequences similar to groups such as Bacillus megaterium, Cytophaga, Desulfovibrio, Legionella, Rhodococcus rhodochrous, Sphingomonas, and an uncharacterized environmental clone. This study describes the characterization of the performance, and microbial composition, of SSFs used for the treatment of water for use in the horticultural industry. Utilization of naturally suppressive population of microorganisms either directly or by manipulation of the environment in an SSF may provide a more reproducible control method for the future.


2006 ◽  
Vol 72 (12) ◽  
pp. 7540-7547 ◽  
Author(s):  
F. A. M. de Bok ◽  
R. C. van Leerdam ◽  
B. P. Lomans ◽  
H. Smidt ◽  
P. N. L. Lens ◽  
...  

ABSTRACT In a lab-scale upflow anaerobic sludge blanket reactor inoculated with granular sludge from a full-scale wastewater treatment plant treating paper mill wastewater, methanethiol (MT) was degraded at 30°C to H2S, CO2, and CH4. At a hydraulic retention time of 9 h, a maximum influent concentration of 6 mM MT was applied, corresponding to a volumetric loading rate of 16.5 mmol liter−1 day−1. The archaeal community within the reactor was characterized by anaerobic culturing and denaturing gradient gel electrophoresis analysis, cloning, and sequencing of 16S rRNA genes and quantitative PCR. Initially, MT-fermenting methanogenic archaea related to members of the genus Methanolobus were enriched in the reactor. Later, they were outcompeted by Methanomethylovorans hollandica, which was detected in aggregates but not inside the granules that originated from the inoculum, the microbial composition of which remained fairly unchanged. Possibly other species within the Methanosarcinacaea also contributed to the fermentation of MT, but they were not enriched by serial dilution in liquid media. The archaeal community within the granules, which was dominated by Methanobacterium beijingense, did not change substantially during the reactor operation. Some of the species related to Methanomethylovorans hollandica were enriched by serial dilutions, but their growth rates were very low. Interestingly, the enrichments could be sustained only in the presence of MT and did not utilize any of the other typical substrates for methylotrophic methanogens, such as methanol, methyl amine, or dimethylsulfide.


2010 ◽  
Vol 76 (16) ◽  
pp. 5479-5487 ◽  
Author(s):  
Shaomei He ◽  
Forrest I. Bishop ◽  
Katherine D. McMahon

ABSTRACT “Candidatus Accumulibacter” and total bacterial community dynamics were studied in two lab-scale enhanced biological phosphorus removal (EBPR) reactors by using a community fingerprint technique, automated ribosomal intergenic spacer analysis (ARISA). We first evaluated the quantitative capability of ARISA compared to quantitative real-time PCR (qPCR). ARISA and qPCR provided comparable relative quantification of the two dominant “Ca. Accumulibacter” clades (IA and IIA) detected in our reactors. The quantification of total “Ca. Accumulibacter” 16S rRNA genes relative to that from the total bacterial community was highly correlated, with ARISA systematically underestimating “Ca. Accumulibacter” abundance, probably due to the different normalization techniques applied. During 6 months of normal (undisturbed) operation, the distribution of the two clades within the total “Ca. Accumulibacter” population was quite stable in one reactor while comparatively dynamic in the other reactor. However, the variance in the clade distribution did not appear to affect reactor performance. Instead, good EBPR activity was positively associated with the abundance of total “Ca. Accumulibacter.” Therefore, we concluded that the different clades in the system provided functional redundancy. We disturbed the reactor operation by adding nitrate together with acetate feeding in the anaerobic phase to reach initial reactor concentrations of 10 mg/liter NO3-N for 35 days. The reactor performance deteriorated with a concomitant decrease in the total “Ca. Accumulibacter” population, suggesting that a population shift was the cause of performance upset after a long exposure to nitrate in the anaerobic phase.


Sign in / Sign up

Export Citation Format

Share Document