scholarly journals Applicability of ferric(III) hydroxide as a phosphate selective adsorbent for sewage treatment

Author(s):  
Choon-Ki Na ◽  
Ga-Yeon Park ◽  
Hyun Ju Park

Abstract This research was undertaken to evaluate the usability of ferric(III) hydroxide for phosphate removal from sewage. A batch adsorption experiments, partly a fixed bed column experiments, were conducted to study the influence of various factors, competing anions and contact time on the adsorption of phosphate on ferric(III) hydroxide. Processing ferric iron in the form of akaganeite (β-FeOOH) greatly increased the adsorption capacity for phosphate. The optimum phosphate removal was observed in the pHeq ≤ 6.0. All results from this study demonstrate the potential usability of β-FeOOH as a good phosphate selective adsorbent for the phosphate removal system of sewage treatment plant.

Author(s):  
Andrea Lanzini ◽  
Pierluigi Leone ◽  
Massimo Santarelli

A biogas coming from anaerobic digestion of urban sewage has been used to feed a SOFC planar anode-supported cell. The sewage is produced from the urban area of Torino (IT), and eventually collected and treated by SMAT (the municipal company managing the potable and waste water of the city). The biogas is produced by the thermophilic fermentation of the sludge which remains after the several treatments the sewage goes through in the above-mentioned plant. The biogas is of a high quality: it has on average a a methane content around 65% (the balance being essentially CO2), and the only significant impurity measured is H2S in a range of 70–80 ppm. The as-produced biogas has been used for feeding a planar Ni-YSZ anode-supported SOFC with a LSCF cathode. The biogas desulphurization was accomplished flowing the gas in a fixed-bed reactor, filled with activated. The fuel processing with POX has been assessed to avoid carbon deposition into the Ni-YSZ anode and convert the CH4 into H2 and CO. Short tests to check for eventual anode degradation were performed under typical operating conditions. The cell voltage was always stable under load with the tested mixtures. A cell electrical efficiency around 45% has been measured at 800°C and 80% FU. System simulations have performed as well to assess the whole system configuration under a biogas feeding. Optimization routines have been implemented to predict the best net AC efficiency achievable by a SOFC system running on biogas. Additional considerations on the management of poor LHV biogas mixture have been also assessed, showing how dry-reforming of CH4 with the CO2 already available in the biogas stream would be an excellent option needed to be investigated with further detail in the next future.


1973 ◽  
Vol 8 (1) ◽  
pp. 122-147
Author(s):  
J. D. O’Blenis ◽  
T.R. Warriner

Abstract The current widespread practice of disposal of water filtration plant wastes by direct discharge to receiving waters is coming under critical review by regulatory agencies. Among the alternatives for management of these wastes is the possibility of disposal to sanitary sewer systems. Since a recent nation-wide survey had established alum sludge as the most common waste generated by filtration plants, research was initiated to study the effects of water plant alum sludge on primary sewage treatment. A pilot primary sewage treatment plant was constructed and operated with a raw sewage feed of five litres per minute. A laboratory jar test program was conducted to supplement pilot plant operation. Sludges from two different water purification plants were tested along with alum and combinations of alum and water purification plant sludge for their effects on the removal of suspended solids, chemical oxygen demand (COD) and phosphates. The data showed jar testing to be a good indicator of pilot plant performance. Suspended solids, COD and phosphate removal efficiencies were improved by the addition of the sludges. The phosphate removal capacity of water treatment plant alum sludge was approximately the same as that reported for aluminum hydroxide, or about 1/7 to 1/9 of that determined for alum (as Aluminum). Recycling of the sludges improved phosphate removal performance.


1990 ◽  
Vol 22 (1-2) ◽  
pp. 239-250 ◽  
Author(s):  
B. Andersson

A test program for the use of fixed bed processes in systems for nitrogen removal at an advanced sewage treatment plant is described. Results from studies on nitrification in a full scale trickling filter plant with different filter depths and at different wastewater temperatures are presented. Results from full scale experiments with denitrification/nitrification in a retrofitted activated sludge plant are also presented. The effect of an aerated submerged fixed bed in the aeration basin on nitrification was investigated. Observations of the biofilm formed on the fixed bed were made in microscope.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1791 ◽  
Author(s):  
Gabriela Kamińska

Organic micropollutants enter effluent streams and then flow into receiving waters. The volume adversely affects aquatic biota substantially. Therefore, many efforts have been made to develop methods for their elimination. The aim of this study was the removal of organic micropollutants with different properties from WWTP (wastewater treatment plant) effluent in fixed bed columns packed with several combinations of sand, granular activated carbon (GAC), and granular clay-carbonaceous composite. Two types of bentonite-powder activated carbon-based granules (Ben-AC) were prepared within this work, with different calcination temperature. It was found that higher calcination temperature enhanced the surface porosity and adsorption potential versus studied micropollutants due to dihydroxylation resulting in higher chemical activity. Introduction of these granules in the place of GAC in a fixed bed column enhances the removal degree of micropollutants and typical water quality parameters. For example, the reduction degree of color, phosphate, and nitrate concentrations increased from 83%, 69%, and 4% to 95%, 83%, and 24% for column I and II, respectively. The concentration of carbamazepine, octylphenol, nononylphenol, and anthracene was reduced by 75%, 83%, 72%, 99% in column I, while using column II or III their removal was: 86%, 97%, 99%, 99%, respectively. Independent of the column filling, the removal of carbamazepine was the lowest (75–86%), while the highest retention was obtained for anthracene (99%). The study of column performance in the treatment of effluent in time showed that column filled with Ben-AC-400 guaranteed high removal degree in the operating time. The batch adsorption data were better described by both the Langmuir model.


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


2008 ◽  
Vol 37 (2) ◽  
Author(s):  
Maciej Walczak

Changes of microbial indices of water quality in the Vistula and Brda rivers as a result of sewage treatment plant operationThis paper reports the results of studies of microbiological changes in the water quality of the Vistula and Brda rivers after the opening of sewage treatment plants in Bydgoszcz. The study involved determining the microbiological parameters of water quality. Based on the results obtained, it was found that the quality of the water in both rivers had improved decidedly after the opening of the plants, although an increased number of individual groups of microorganisms was found at the treated sewage outlet from one of the plants.


2000 ◽  
Vol 36 (4) ◽  
pp. 161-171
Author(s):  
KENITSU KONNO ◽  
NAOKI ABE ◽  
YOSHIRO SATO ◽  
KOJI AKAMATSU ◽  
MAKOTO ABE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document