scholarly journals Diclofenac degradation based on shape-controlled cuprous oxide nanoparticles prepared by using ionic liquid

Author(s):  
Jialei Huang ◽  
Yan Luo

Abstract Persulfate oxidation technology is widely used in wastewater treatment, but there are still many disadvantages, such as high energy consumption, side reaction and narrow pH applicability. Copper oxides can activate persulfate steadily with higher efficiency. In this paper, a novel preparation method of shape-controlled cuprous oxide (Cu2O) nanoparticles featured with high catalytic performance was explored. It was found that adding ionic liquid 1-butyl-3-methylimidazolium bromide ([BMIM]Br) during preparation of Cu2O can improve the degradation rate of diclofenac (DCF). Cu2O nanoparticles possess good stability in consecutive cycling tests, which was confirmed by X-ray photoelectron spectroscopy. The possible mechanism of Cu2O activating persulfate at different initial pH conditions was discussed based on electron paramagnetic resonance spin-trapping experiment. It was found that DCF was efficiently degraded in the Cu2O/peroxydisulfate (PDS) system within a broad pH range from 5 to 11. It proved via a quenching experiment that the activation process of PDS mainly occurs on the surface layer of Cu2O nanoparticles. As a result, shape-controlled Cu2O nanoparticles prepared by ionic liquid are expected to be used for in situ chemical oxidation, which is an effective oxidation processes to degrade DCF remaining in surface water and ground water.

2001 ◽  
Vol 16 (10) ◽  
pp. 2893-2905 ◽  
Author(s):  
S. Bouaricha ◽  
J-P. Dodelet ◽  
D. Guay ◽  
J. Huot ◽  
R. Schulz

A nanocomposite (Mg–V)nano made of 90 wt% Mg and 10 wt% V was prepared by high-energy ball-milling during 40 h. The activation characteristics of (Mg–V)nano are rather poor, the hydrogen content [H] reaching 4 wt% after more than 100 h (t4wt%) following the initial exposure of the material to H2. Adding 9 wt% graphite to (Mg–V)nano and resuming the milling operation for 30 min leads to the formation of (Mg–V)nano /G, which exhibits a t4wt% value of only 10 min. The addition of more than 9 wt% graphite to (Mg–V)nano does not lead to any significant reduction of the t4wt% value. However, extending the milling period with graphite over 30 min leads to a steady increase in t4wt% and, thus, to a deterioration of the activation characteristics. Comparison of the behavior of graphite with other C-based compounds revealed that perylene (C20H12) and pentacene (C22H14), which are made of linked benzene rings, and thus have a 2D structure similar to that of the graphene sheet, are as effective as graphite in improving the activation characteristics of (Mg–V)nano. A structural investigation of (Mg–V)nano /G as a function of the milling time through both C 1s core-level x-ray photoelectron spectroscopy and C K edge x-ray absorption near-edge spectroscopy has shown that the integrity of graphite is progressively lost as the milling period is extended over 30 min. On the basis of these results, it is hypothesized that the adsorption of graphene layer on freshly created Mg surfaces and the formation of highly reactive C species during milling prevents the re-formation of the surface oxide layer responsible for the poor activation characteristics of untreated (Mg–V)nano


CrystEngComm ◽  
2021 ◽  
Author(s):  
Li Wang ◽  
yutai wu ◽  
Chaoyang Sun ◽  
Hui Wang ◽  
Jianwei Ren

Cuprous oxide (Cu2O) nanoparticles hold the promises as low-cost catalysts both for the oxidations of glucose and hydrazine (N2H4), and different geometrical shapes have been implied in literature to influence...


2020 ◽  
Author(s):  
Urbi Pal ◽  
Fangfang Chen ◽  
Derick Gyabang ◽  
Thushan Pathirana ◽  
Binayak Roy ◽  
...  

We explore a novel ether aided superconcentrated ionic liquid electrolyte; a combination of ionic liquid, <i>N</i>-propyl-<i>N</i>-methylpyrrolidinium bis(fluorosulfonyl)imide (C<sub>3</sub>mpyrFSI) and ether solvent, <i>1,2</i> dimethoxy ethane (DME) with 3.2 mol/kg LiFSI salt, which offers an alternative ion-transport mechanism and improves the overall fluidity of the electrolyte. The molecular dynamics (MD) study reveals that the coordination environment of lithium in the ether aided ionic liquid system offers a coexistence of both the ether DME and FSI anion simultaneously and the absence of ‘free’, uncoordinated DME solvent. These structures lead to very fast kinetics and improved current density for lithium deposition-dissolution processes. Hence the electrolyte is used in a lithium metal battery against a high mass loading (~12 mg/cm<sup>2</sup>) LFP cathode which was cycled at a relatively high current rate of 1mA/cm<sup>2</sup> for 350 cycles without capacity fading and offered an overall coulombic efficiency of >99.8 %. Additionally, the rate performance demonstrated that this electrolyte is capable of passing current density as high as 7mA/cm<sup>2</sup> without any electrolytic decomposition and offers a superior capacity retention. We have also demonstrated an ‘anode free’ LFP-Cu cell which was cycled over 50 cycles and achieved an average coulombic efficiency of 98.74%. The coordination chemistry and (electro)chemical understanding as well as the excellent cycling stability collectively leads toward a breakthrough in realizing the practical applicability of this ether aided ionic liquid electrolytes in lithium metal battery applications, while delivering high energy density in a prototype cell.


2019 ◽  
Author(s):  
Georg Dewald ◽  
Saneyuki Ohno ◽  
Marvin Kraft ◽  
Raimund Koerver ◽  
Paul Till ◽  
...  

<p>All-solid-state batteries are often expected to replace conventional lithium-ion batteries in the future. However, the practical electrochemical and cycling stability of the best-conducting solid electrolytes, i.e. lithium thiophosphates, are still critical issues that prevent long-term stable high-energy cells. In this study, we use <i>stepwise</i><i>cyclic voltammetry </i>to obtain information on the practical oxidative stability limit of Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>, a Li<sub>2</sub>S‑P<sub>2</sub>S<sub>5</sub>glass, as well as the argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolytes. We employ indium metal and carbon black as the counter and working electrode, respectively, the latter to increase the interfacial contact area to the electrolyte as compared to the commonly used planar steel electrodes. Using a stepwise increase in the reversal potentials, the onset potential at 25 °C of oxidative decomposition at the electrode-electrolyte interface is identified. X‑ray photoelectron spectroscopy is used to investigate the oxidation of sulfur(-II) in the thiophosphate polyanions to sulfur(0) as the dominant redox process in all electrolytes tested. Our results suggest that after the formation of these decomposition products, significant redox behavior is observed. This explains previously reported redox activity of thiophosphate solid electrolytes, which contributes to the overall cell performance in solid-state batteries. The <i>stepwise cyclic voltammetry</i>approach presented here shows that the practical oxidative stability at 25 °C of thiophosphate solid electrolytes against carbon is kinetically higher than predicted by thermodynamic calculations. The method serves as an efficient guideline for the determination of practical, kinetic stability limits of solid electrolytes. </p>


2019 ◽  
Author(s):  
Georg Dewald ◽  
Saneyuki Ohno ◽  
Marvin Kraft ◽  
Raimund Koerver ◽  
Paul Till ◽  
...  

<p>All-solid-state batteries are often expected to replace conventional lithium-ion batteries in the future. However, the practical electrochemical and cycling stability of the best-conducting solid electrolytes, i.e. lithium thiophosphates, are still critical issues that prevent long-term stable high-energy cells. In this study, we use <i>stepwise</i><i>cyclic voltammetry </i>to obtain information on the practical oxidative stability limit of Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>, a Li<sub>2</sub>S‑P<sub>2</sub>S<sub>5</sub>glass, as well as the argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolytes. We employ indium metal and carbon black as the counter and working electrode, respectively, the latter to increase the interfacial contact area to the electrolyte as compared to the commonly used planar steel electrodes. Using a stepwise increase in the reversal potentials, the onset potential at 25 °C of oxidative decomposition at the electrode-electrolyte interface is identified. X‑ray photoelectron spectroscopy is used to investigate the oxidation of sulfur(-II) in the thiophosphate polyanions to sulfur(0) as the dominant redox process in all electrolytes tested. Our results suggest that after the formation of these decomposition products, significant redox behavior is observed. This explains previously reported redox activity of thiophosphate solid electrolytes, which contributes to the overall cell performance in solid-state batteries. The <i>stepwise cyclic voltammetry</i>approach presented here shows that the practical oxidative stability at 25 °C of thiophosphate solid electrolytes against carbon is kinetically higher than predicted by thermodynamic calculations. The method serves as an efficient guideline for the determination of practical, kinetic stability limits of solid electrolytes. </p>


Ionics ◽  
2019 ◽  
Vol 25 (9) ◽  
pp. 4351-4360 ◽  
Author(s):  
Zhongliang Yu ◽  
Jiahe Zhang ◽  
Chunxian Xing ◽  
Lei Hu ◽  
Lili Wang ◽  
...  

2018 ◽  
Vol 383 ◽  
pp. 102-109 ◽  
Author(s):  
Ranjith Thangavel ◽  
Aravindaraj G. Kannan ◽  
Rubha Ponraj ◽  
Vigneysh Thangavel ◽  
Dong-Won Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document