scholarly journals Efficient removal of crystal violet dye from aqueous solutions using sodium hydroxide modified avocado shells: kinetics and isotherms modeling

Author(s):  
M. Ait Haki ◽  
A. Imgharn ◽  
N. Aarab ◽  
A. Hsini ◽  
A. Essekri ◽  
...  

Abstract The main objective of this study is to optimize a new composite for the depollution of contaminated water. The sodium hydroxide-modified Avocado shells (NaOH-AS) were firstly prepared, characterized by field-emission-scanning-electron-microscopy (FE-SEM), X-ray energy dispersive spectroscopy (EDS) and Fourier transforms infrared (FT-IR) spectroscopy, and applied for efficient removal of Crystal violet dye (CV) in wastewater. In addition, the adsorption in a batch system of CV dye on the NaOH-AS material was studied. Therefore, we accomplished a parametric study of the adsorption by studying the effect of several important parameters on the decolorizing power of the used material, namely, initial pH, contact time, initial CV dye concentration, temperature, and the ionic strength effect on the CV dye adsorption process were systematically assessed. The highest adsorption efficiency of CV dye (>96.9%) by NaOH-AS was obtained at pH >8. The pseudo-second-order kinetic model gave the best description of the adsorption kinetic of CV dye on the AS and NaOH-AS adsorbents. Besides, the mass transfer of CV dye molecules from the solution to the adsorbent surface occurred in three sequential stages (boundary layer diffusion, intraparticle diffusion and adsorption equilibrium). The adsorption isotherm data were best fitted with the Freundlich model. The adsorption capacity of AS increased from 135.88 to 179.80 mg g−1 after treatment by 1 M NaOH. The thermodynamic study showed that CV dye adsorption onto NaOH-AS was an exothermic and feasible process. The electrostatic interactions acted as the only forces governing the CV adsorption mechanism. The NaOH-AS demonstrated a satisfactory reusability. Therefore, we can state that the as-developed NaOH-AS material has a potential application prospect as an efficient adsorbent for CV dye from wastewaters.

Author(s):  
Lahoucine Brini ◽  
Abdelghani Hsini ◽  
Yassine Naciri ◽  
Asmae Bouziani ◽  
Zeeshan Ajmal ◽  
...  

Abstract Novel an arginine-modified Heliotrope leaf (Arg@HL) was used as adsorbent for the crystal violet (CV) dye adsorption in a batch process. The physicochemical and morphological composition of Arg@HL were characterized by field-emission-scanning-electron-microscopy (FE-SEM), Fourier transforms infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC). The experiments were carried out to investigate the factors that influence the dye uptake by the adsorbent, such as the contact time under agitation, adsorbent amount, initial dye concentration, temperature and pH of dye solution. The optimum conditions of adsorption were found on the batch scale as followed: CV concentration of 20 mg·L−1, an amount of 0.75 g·L−1 of the adsorbent, 90 min contact time, 6 pH and 25 °C temperature for Arg@HL. The results confirmed a second-order model explaining the dye crystal violet's adsorption's kinetics by Arg-Heliotrope leaves. The Langmuir model effectively defines the adsorption isotherms. The results revealed that the Arg@HL has the potential to be used as a low-cost adsorbent for the removal of CV dye from aqueous solutions.


2014 ◽  
Vol 35 (12) ◽  
pp. 1508-1519 ◽  
Author(s):  
A. Blanco-Flores ◽  
A. Colín-Cruz ◽  
E. Gutiérrez-Segura ◽  
V. Sánchez-Mendieta ◽  
D.A. Solís-Casados ◽  
...  

2013 ◽  
Vol 67 (4) ◽  
pp. 737-744 ◽  
Author(s):  
J. X. Zhang ◽  
L. L. Ou

The adsorption of crystal violet dye from aqueous solutions onto an activated carbon prepared from peanut shells was analyzed in this study. The effects of particle size, initial concentration, time and temperature on crystal violet removal were studied in batch experiments. Experimental results showed that the adsorption equilibrium was achieved within 100 min for all studied concentrations. Analysis of adsorption results showed that the adsorption isotherms could be well fitted to the Langmuir model. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients for pseudo first-order and second-order kinetic models were calculated and discussed. The results revealed that the adsorption kinetics was in good agreement with the pseudo second-order equation. Thermodynamic parameters such as the change of Gibbs free energy (ΔG°), change of enthalpy (ΔH°) and change of entropy (ΔS°) have also been determined and it has been found that the adsorption process should be spontaneous, endothermic and physisorption in nature.


2021 ◽  
Vol 16 (2) ◽  
pp. 436-443
Author(s):  
Sharmila Ramasamy ◽  
Anbarasu Kaliyaperumal ◽  
Thamilarasu Pommanaickar

Textile industries discharge wastewater containing various dyes including Crystal Violet dye. These dyes are very harmful for human beings, animals and plants. Therefore, the attempt is made for adsorption framework on elimination of crystal violet dye by using Cicca acida L. stem-activated carbon from aqueous solution carried out under various experimental methods and optimization conditions. Adsorption data modeled with Freundlich, Langmuir and Tempkin adsorption isotherms. Thermodynamic factors like as ∆Ho, ∆So and ∆Go were calculated, which indicated that the adsorption was spontaneous and endothermic nature. Based on kinetic study, pseudo-second order kinetic model was fit compared to the pseudo-first order kinetic model. The adsorbent has been characterized by SEM before and after adsorption of crystal violet dye solution.


2021 ◽  
Author(s):  
Vani Gandham ◽  
UMA Addepally ◽  
Bala Narsaiah T

Abstract Malachite Green (MG), a cationic synthetic dye is considered hazardous when discharged into the water bodies without any adequate treatment. It can affect the multiple segments of the environment leading to irreversible persistent changes. So, there is a need for remediation with cost-effective method to remove dyes from effluents. Adsorption is one such technique to remove dyes from wastewater and is effective and economical. The present study describes the removal of MG cationic dye from wastewater using eco-friendly and biodegradable lignin extracted from hydrothermally treated rice straw by adsorption process. Functional group analysis and morphological characterisation was done to the extracted lignin after quantification. The maximum percent removal of MG 92 ± 0.2 % was observed from a series of batch experiments at optimum process parameters of: contact time 80 min, initial dye concentration 50 ppm, lignin dosage 0.25g, pH 7, temperature 300c and with 100 rpm agitation speed. The adsorption kinetics and isotherms were determined for the experimental data using four kinetic models (pseudo-first-order, second order, pseudo-second-order and intra-particle diffusion model) and two isotherm models (Langmuir and Freundlich). The results suggested that the kinetics data fit to the pseudo-second-order kinetic model with the maximum adsorption capacity 36.7 mg/g and the two isotherm models were applicable for the adsorption of MG onto the lignin. Additionally, the thermodynamic parameters ΔSo, ΔHo and ΔGo were evaluated. Therefore, lignin which is an environmental friendly and low cost carbon material that can be used as an adsorbent for dye removal.


2021 ◽  
Vol 34 (1) ◽  
pp. 104-110
Author(s):  
Sonia Rani ◽  
Sudesh Chaudhary

The chickpea husk (Cicer arientum) were activated by chemical modification with sulphuric acid, for its application as biosorbent for the remediation of crystal violet dye from wastewater. Activated chickpea husk (ACH) was characterized for its chemical structure and morphology using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The after effects of leading affecting parameters like dose of adsorbent, time of contact, pH and concentration were studied by commencing experiments in batch mode. Adsorption mechanism and sorption efficiency of ACH was examined using variety of isotherms (Langmuir & Freundlich) and kinetic models (pseudo first order and pseudo second order). Experimental data for adsorption rate was in good harmony with the results obtained using pseudo second order model. The adsorption capacity determined using Langmuir isotherm and pseudo second order model was found to be 142.85 mg/g.


2019 ◽  
Vol 8 (6) ◽  
pp. 5149-5159 ◽  
Author(s):  
Muniba Rahmat ◽  
Asma Rehman ◽  
Sufyan Rahmat ◽  
Haq Nawaz Bhatti ◽  
Munawar Iqbal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document