scholarly journals Advanced catalytic oxidation coupled to biological systems to treat pesticide-contaminated water: A review on technological trends and future challenges

Author(s):  
Joseph Soto-Verjel ◽  
Aymer Y. Maturana ◽  
Salvador E. Villamizar

Abstract This article had the one and only objective of consolidating the couplings of advanced oxidation processes and biological in the decontamination of wastewater with pesticide content reported in the Scopus and Web of Science databases, through a critical analysis of which have been the most used, what methodologies have been implemented to develop them, identify the objectives of each work, determine the success of the research and where the main niches of knowledge are, which can lead to the generation of new scientific knowledge as well as future trends. A co-occurrence analysis was carried out through the VOSViewer software, to determine the most associated key words with the treatment configurations described above. Fenton and Photo-Fenton processes, heterogeneous photocatalysis TiO2/UV, electrocatalysis, ozonization and a particular case of hydrodynamic-ozone cavitation as main advanced oxidation processes, together with advanced biological processes such as SBR, MBR, MBBR; biodegradability and toxicity tests with bacterial strains and surface wetlands, whose treatment philosophy is activated sludge. The main future trends are the reuse of treated wastewater, the analysis and control of costs towards the efficient use of resources and the primary study of the byproducts generated in advanced oxidation to improve the efficiencies in the coupling.

Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3010
Author(s):  
Eva Domingues ◽  
Maria João Silva ◽  
Telma Vaz ◽  
João Gomes ◽  
Rui C. Martins

Wastewaters from the olive oil industry are a regional environmental problem. Their phenolic content provides inherent toxicity, which reduces the treatment potential of conventional biological systems. In this study, Sulfate Radical based Advanced Oxidation Processes (SRbAOPs) are compared with advanced oxidation processes (namely Fenton’s peroxidation) as a depuration alternative. Synthetic olive mill wastewaters were submitted to homogeneous and heterogeneous SRbAOPs using iron sulfate and solid catalysts (red mud and Fe-Ce-O) as the source of iron (II). The homogenous process was optimized by testing different pH values, as well as iron and persulfate loads. At the best conditions (pH 5, 300 mg/L of iron and 600 mg/L of persulfate), it was possible to achieve 39%, 63% and 37% COD, phenolic compounds and TOC removal, respectively. The catalytic potential of a waste (red mud) and a laboratory material (Fe-Ce-O) was tested using heterogenous SRbAOPs. The best performance was achieved by Fe-Ce-O, with an optimal load of 1600 mg/L. At these conditions, 27%, 55% and 5% COD, phenolic compounds and TOC removal were obtained, respectively. Toxicity tests on A. fischeri and L. sativum showed no improvements in toxicity from the treated solutions when compared with the original one. Thus, SRbAOPs use a suitable technology for synthetic OMW.


2018 ◽  
Vol 4 (9) ◽  
pp. 1345-1360 ◽  
Author(s):  
János Farkas ◽  
Máté Náfrádi ◽  
Tamás Hlogyik ◽  
Bartus Cora Pravda ◽  
Krisztina Schrantz ◽  
...  

The efficiency of UV-photolysis, ozonation, their combination and heterogeneous photocatalysis was investigated and compared in various matrices.


2015 ◽  
Vol 43 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Tünde Alapi ◽  
Gergő Simon ◽  
Gábor Veréb ◽  
Krisztina Kovács ◽  
Eszter Arany ◽  
...  

Abstract Diuron is a phenylurea-based residual herbicide with toxic and endocrine disrupting effects. The aims of the present work were the comparison of the efficiency of various advanced oxidation processes, such as direct ultraviolet photolysis, ozonation, their combination, and heterogeneous photocatalysis from the point of view of the transformation rate of diuron, rate of mineralisation and dehalogenation, formation of aromatic intermediates, and ecotoxicological effects of the formed multicomponent solutions during the treatments. The initial rates of transformation of diuron are in the order of ozonation < heterogeneous photocatalysis < UV photolysis < combination of UV photolysis and ozonation. Each method provided similar tendencies in the decrease of the concentration of organically bound chlorines (AOX) since, until the diuron was completely degraded, the concentration of AOX decreased almost to zero in each case. However, only heterogeneous photocatalysis was found to be effective in terms of mineralisation. Ecotoxicological results showed that in each case, except for ozonation, the toxicity of the treated solutions changed through a maximum during the transformation of diuron. The maximum value was found to be lower in the case of heterogeneous photocatalysis. Thus, the formation and decomposition of by-products of relatively higher toxicity than diuron can be supposed. Our results confirmed that the amount of the formed (aromatic) intermediates, their quality and specific toxicity strongly depend on the applied processes.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2785
Author(s):  
Aviv Kaplan ◽  
Hadas Mamane ◽  
Yaal Lester ◽  
Dror Avisar

Advanced technologies, such as reverse osmosis (RO), allow the reuse of treated wastewater for direct or indirect potable use. However, even highly efficient RO systems produce ~10–15% highly contaminated concentrate as a byproduct. This wastewater RO concentrate (WWROC) is very rich in metal ions, nutrients, and hard-to-degrade trace organic compounds (TOrCs), such as pharmaceuticals, plasticizers, flame retardants, and detergents, which must be treated before disposal. WWROC could be up to 10 times more concentrated than secondary effluent. We examined the efficiency of several advanced oxidation processes (AOPs) on TOrC removal from a two-stage WWROC matrix in a pilot wastewater-treatment facility. WWROC ozonation or UV irradiation, with H2O2 addition, demonstrated efficient removal of TOrCs, varying between 21% and over 99% degradation, and indicating that radical oxidation (by HO·) is the dominant mechanism. However, AOPs are not sufficient to fully treat the WWROC, and thus, additional procedures are required to decrease metal ion and nutrient concentrations. Further biological treatment post-AOP is also highly important, to eliminate the degradable organic molecules obtained from the AOP.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 560
Author(s):  
Ana Rita Lado Ribeiro ◽  
Jorge Jesus Rodríguez-Chueca ◽  
Stefanos Giannakis

Without any doubt, the 21st century has kick-started a great evolution in all aspects of our everyday life [...]


2014 ◽  
Vol 70 (1) ◽  
pp. 70-75 ◽  
Author(s):  
Radka Pešoutová ◽  
Luboš Stříteský ◽  
Petr Hlavínek

This study investigates the oxidation of selected endocrine disrupting compounds (estrone, 17β-estradiol, estriol and 17α-ethinylestradiol) during ozonation and advanced oxidation of biologically treated municipal wastewater effluents in a pilot scale. Selected estrogenic substances were spiked in the treated wastewater at levels ranging from 1.65 to 3.59 μg · L−1. All estrogens were removed by ozonation by more than 99% at ozone doses ≥1.8 mg · L−1. At a dose of 4.4 · mg L−1 ozonation reduced concentrations of estrone, 17β-estradiol, estriol and 17α-ethinylestradiol by 99.8, 99.7, 99.9 and 99.7%, respectively. All tested advanced oxidation processes (AOPs) achieved high removal rates but they were slightly lower compared to ozonation. The lower removal rates for all tested advanced oxidation processes are caused by the presence of naturally occurring hydroxyl radical scavengers – carbonates and bicarbonates.


Author(s):  
Sadia Sahi Placide ◽  
Kambiré Ollo ◽  
Gnamba Corneil Quand-même ◽  
Pohan Lemeyonouin Aliou Guillaume ◽  
Berté Mohamed ◽  
...  

Biological treatment, due to its low installation cost, is widely used for wastewater treatment. However, this treatment remains ineffective for the oxidation of so-called emerging molecules. To solve this environmental problem, advanced oxidation processes (AOPs) combine with Biological treatment for rapid, efficient and cost-effective purification of wastewater. This combination used in this work, allowed a total mineralization of a real wastewater solution from the teaching hospital of Treichville named CHU of Treichville in Abidjan (CHUT), both in terms of organic and microbiological pollutants. Real wastewater from the CHUT underwent a Biological treatment for 28 days via the Zahn-Wellens methods which made it possible to have a reduction rate of the chemical oxygen demand of more than 90% of biologically active organic pollutants. The biologically treated wastewater was doped with ceftriaxone (CTX) to simulate a situation of wastewater containing a recalcitrant compound after Biological treatment. Subsequently, the doped solution underwent treatment with different AOPs (UV / H2O2, Fe2+ / H2O2 and UV / Fe2+ / H2O2). This combination resulted in a COD reduction rate of over to be higher 98% and total inactivation of microbiological germs.


2016 ◽  
Vol 319 ◽  
pp. 34-42 ◽  
Author(s):  
Benjamin Garza-Campos ◽  
Enric Brillas ◽  
Aracely Hernández-Ramírez ◽  
Abdellatif El-Ghenymy ◽  
Jorge Luis Guzmán-Mar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document