scholarly journals REVIEW OF THE FLEXURAL STRENGTH OF LIGHTWEIGHT CONCRETE BEAM USING PUMICE STONE AS OF SUBSTITUTION PARTIAL COARSE AGGREGATE

2021 ◽  
Vol 21 (85) ◽  
Author(s):  
Mufti Amir Sultan

The density of concrete less than that of nominal concrete achieved by any means is referred as Light weight concrete. Circulated air through Concrete, Light Weight Aggregate Concrete, Foamed Concrete are different types of Light weight concrete. In this research study, the density of the concrete has been reduced by replacing the coarse aggregate by the pumice stone as light weight coarse aggregate. The major advantage of this study is to reduce the risk of seismic damages of the structure by reducing the self weight of the structure. The decrease in dead load of structure because of the utilization of LWC additionally brings about reduction in the cross segment of other auxiliary individuals such as beam, column and foundation. The pumice stones have huge number of voids and have moderately higher warm protection than the ostensible aggregates. The objective of this research is to obtain light weight concrete having low unit weight and an optimum compressive strength. The Nominal concrete and the light weight concrete is prepared and the tests were led to decide the mechanical properties and compressive quality, its flexural capacity in beams


2017 ◽  
Vol 902 ◽  
pp. 65-73 ◽  
Author(s):  
Elly Tjahjono ◽  
Ayudia M. Fani ◽  
Dodorus D. Dodi ◽  
Erinda P. Purnamasari ◽  
Feny A. Silaban ◽  
...  

The concrete technology has been growing significantly since years ago especially in Indonesia’s construction. Therefore, Indonesia needs new innovation of concrete technology to solve the problem for the availability of concrete material. Indonesia is known as the largest producer of crude palm oil (CPO) in the world. Oil palm shell (OPS) is one of the solid wastes produced in crude palm oil industry that can be used as concrete materials. This paper presents the experimental results of a research project to produce structural lightweight concrete using oil palm shell (OPS), as a coarse aggregate. This experimental was investigating the effects of adding silica fume, fly ash, and superplasticizer for the compressive strength and flexural strength of the OPS lightweight concrete. It was found that OPS lightweight concrete has compressive strength up to 23.90 MPa in 28-days and flexural strength up to 2.54 MPa in 28-days. This experimental concluded that OPS lightweight concrete has a good potential as a lightweight coarse aggregate and low-cost housing construction in Indonesia.


Lightweight concrete is the way to reduce the weight as well as deflection in concrete members without affecting its properties. Many of the researches are in progress to find a substitute for this lightweight material. In this project, we would like to take the naturally available fibre named sisal fibre and bamboo as partial replacement material. The influence of sisal fibres on the strength of concrete is taken as the main objective of this experimental study. The addition of natural fibre to the lightweight concrete will enhance the various strength parameters like flexural strength, compressive strength, and increase the ductile behaviour. In the present work, it is aimed to investigate the mechanical properties of lightweight concrete with a replacement of sisal fibre for cement and bamboo as a replacement in coarse aggregate in different percentages. The compressive strength, flexural strength, deflection of the beam is studied with consideration of M25 concrete specimens. Totally 36 number of 500 x 100 x 100mm flexural member cast and tested. It is recommended up to 5% replacement of coarse aggregate with bamboo and 5% addition of sisal fibres with cement provide at M25 grade of concrete gives the optimum increases of strength values. The test results indicated that the sisal fibres were effective in improving the strength of lightweight concrete.


2019 ◽  
Vol 276 ◽  
pp. 01032 ◽  
Author(s):  
Farah Dini Sofyani ◽  
Nuraziz Handika ◽  
Elly Tjahjono ◽  
Essy Arijoeni

Along with the increasing demand for habitation in Indonesia, the need for concrete as the most favourable housing material is escalating. Oil Palm Shell (OPS) as coarse aggregate material is a possible alternatives material in concrete mix proportions. This possible choice of material not only can fulfil the requirements of the materials, but is also capable of reducing the problem of OPS waste in Indonesia. As OPS concrete compressive strength in previous studies in laboratory is in the range of 20-23 MPa, studies on larger elements of structure become interesting. This research presents flexure behaviour of lightweight concrete beams using OPS replacing natural coarse aggregates under four-point loading application. OPS is firstly pre-treated using hot water at 50°C based on previous research. In this study, a series of tests was conducted on two samples of identical beam with dimension of 15×25×300 cm. This size represents the typical dimension of beam used in two-storey houses in Indonesia. Mechanical response due to bending that occurs in OPS lightweight concrete beam is presented. Observation on the beam is emphasised on the pure bending area.


2015 ◽  
Vol 77 (1) ◽  
Author(s):  
Chun-Chieh Yip ◽  
Abdul Kadir Marsono ◽  
Jing-Ying Wong ◽  
Mugahed Y. H. Amran

Special reinforced lightweight aggregate concrete (SRLWAC) beam is designed as beam component in Industrialised Building System (IBS). It is used to overcome the difficulties during the component installation due to the heavy lifting task. This paper presents the flexural strength and performance of SRLWAC beam under vertical static load. SRLWAC beam was set-up on two columns corbel and tested under monotonic vertical load. Five Linear Variable Displacement Transducers (LVDTs) were instrumented in the model to record displacement. The ultimate flexural capacity of the beam was obtained at the end of experiment where failure occurred. Performance of the beam was evaluated in load-displacement relationship of beam and mode of failure. SRLWAC beam was then modelled and simulated by nonlinear finite element software- Autodesk Simulation Mechanical. Result from finite element analysis was verified by experimental result. Maximum mid-span displacement, Von-Mises stress, concrete maximum principal stress, and yielding strength of reinforcement were discussed in this paper. The beam was behaved elastically up to 90 kN and deformed plastically until ultimate capacity of 250.1 kN in experimental test. The maximum mid span displacement for experimental and simulation were 15.21 mm and 15.36 mm respectively. The major failure of IBS SRLWAC beam was the splitting of the concrete and yielding of main reinforcements at overlay end. Ductility ratio of IBS SRLWAC beam was 14.2, which was higher than pre-stressed concrete beam.


2018 ◽  
Vol 19 (2) ◽  
pp. 30-42
Author(s):  
Md. Nazmul Huda ◽  
Mohd Zamin Jumaat ◽  
A. B. M. Saiful Islam ◽  
Walid A. Al-Kutti

The performance of high strength structural lightweight concrete (LWC) using the palm wastes, oil palm shell (OPS) as well as palm oil clinker (POC) has been reported. Existing literatures used either OPS or POC individually for production of LWC. Each concept has their own advantages-disadvantages. In this study, both OPS and POC have been put together as coarse aggregate on the way to see the improvement of mechanical properties of waste based LWC. To achieve this purpose, regular coarse aggregate has been fully replaced by OPS and POC in the concrete. This structural grade lightweight concrete is named as palm shell and clinker concrete (PSCC). Attempts have been made with the series of OPS and POC mixture aimed at identifying for better performance. The quantity of OPS and POC mix has been varied as 30%, 40%, 50%, 60% and 70%. Mechanical properties of PSCC like density, workability, compressive strength at different ages, flexural strength, splitting tensile strength as well as modulus of elasticity have been evaluated. It is revealed that the proposed PSCC has extensive potential in terms of high compressive strength and good material behavior to perform as a better LWC. The study could offer structural lightweight concrete of compressive strength up to 46 MPa that is 31% higher than the control mix. The usage of 50% OPS to 50% POC coarse aggregate by vol. in the concrete mix is found to be the optimum mix. Furthermore, simple correlations have been developed which can easily predict compressive strength, splitting tensile strength, flexural strength, modulus of elasticity and ultrasonic pulse velocity of lightweight concrete.


2021 ◽  
Vol 5 (1) ◽  
pp. 46
Author(s):  
Maria Nomikou ◽  
Vasileios Kaloidas ◽  
Christos Triantafyllos Galmpenis ◽  
Nicolaos Anagnostopoulos ◽  
Georgios Tzouvalas

Pumice quarried by LAVA MINING AND QUARRYING SA from Yali Island, Dodecanese, is used in domestic and foreign markets mainly as concrete lightweight aggregate, masonry unit constituents, road substrate, and loose soil stabilization. It is a porous natural volcanic rock with low density, low thermal and noise transmission, and the highest strength among all the natural or artificial lightweight materials of mineral origin. Nowadays, pumice is of additional interest as it has a reduced CO2 footprint because thermal energy is not needed for its expansion compared with the artificial lightweight aggregates. In this context, HERACLES GROUP in collaboration with Sika Hellas has launched a new product containing pumice stone under the brand name GUNITECH®. GUNITECH® is an innovative bagged material for spraying concrete applications. It is a ready lightweight concrete, for building repairs certified as EN 1504-3.


2008 ◽  
Vol 3 (4) ◽  
pp. 130-137 ◽  
Author(s):  
R Kumutha ◽  
K Vijai

The properties of concrete containing coarse recycled aggregates were investigated. Laboratory trials were conducted to investigate the possibility of using recycled aggregates from the demolition wastes available locally as the replacement of natural coarse aggregates in concrete. A series of tests were carried out to determine the density, compressive strength, split tensile strength, flexural strength and modulus of elasticity of concrete with and without recycled aggregates. The water cement ratio was kept constant for all the mixes. The coarse aggregate in concrete was replaced with 0%, 20%, 40%, 60%, 80% and 100% recycled coarse aggregates. The test results indicated that the replacement of natural coarse aggregates by recycled aggregates up to 40% had little effect on the compressive strength, but higher levels of replacement reduced the compressive strength. A replacement level of 100% causes a reduction of 28% in compressive strength, 36% in split tensile strength and 50% in flexural strength. For strength characteristics, the results showed a gradual decrease in compressive strength, split tensile strength, flexural strength and modulus of elasticity as the percentage of recycled aggregate used in the specimens increased. 100% replacement of natural coarse aggregate by recycled aggregate resulted in 43% savings in the cost of coarse aggregates and 9% savings in the cost of concrete.


Sign in / Sign up

Export Citation Format

Share Document