scholarly journals RHEOLOGICAL RELATIONSHIP TO SEDIMENT DEPOSITION RATE IN MACAN WEIR SEDIMENT TRAPS

2021 ◽  
Vol 21 (87) ◽  
Author(s):  
Muhammad Isnaeni
2014 ◽  
Vol 10 (2) ◽  
pp. 623-642 ◽  
Author(s):  
E. M. Haltia ◽  
N. R. Nowaczyk

Abstract. Paleomagnetic measurements were performed on sediments drilled from ICDP Site 5011-1 in Lake El'gygytgyn (67°30' N, 172°05' E) located in Far East Russian Arctic. The lake partly fills a crater formed by a meteorite impact 3.58 ± 0.04 Ma ago. Sediments from three parallel cores (5011-1A, 5011-1B and 5011-1C), recovered from the middle part of the lake, yield a total of 355 m of sediment. Sediments are characterized by a variable lithology, where intervals of homogenous and laminated sediments alternate, and mass movement deposits occur frequently along the sediment profile. Mineral magnetic investigation made on sediments enclosed in core catchers suggests that magnetic carrier in these sediments is partly maghemitized Ti-rich pseudo-single domain magnetite. Its detrital origin can be shown by mineral magnetic measurements and SEM-EDS analyses performed on mini-sized cylindrical rock samples, polished rock sections and creek sediments. The intensity of the natural remanent magnetization in the sediments is high with a range from about 1 to 1000 mA m−1. Most of the sediments carry a stable magnetization interpreted as primary depositional remanent magnetization. Characteristic inclination data show alternating intervals of steep positive and negative inclinations that are used to assign magnetic polarity to the lake sediment profile. This is a rather straightforward procedure owing to the mainly high quality of data. The Matuyama/Gauss (M/G) (2.608 Ma) and Brunhes/Matuyama (B/M) (0.780 Ma) reversals were recognized in the sediments. The Mammoth and Kaena reversed subchrons were identified during the Gauss chron, and the Olduvai and Jaramillo normal subchrons as well as the Réunion and Cobb Mountain cryptochrons were identified during the Matuyama chron. Sediments also provide a record of the Olduvai precursor and Intra-Jaramillo geomagnetic excursions. Sediment deposition rate is highest at the base of the sequence laid down in the early Gauss chron, when the deposition rate is approximately 44 cm kyr−1. Sediment deposition decelerates upcore and it is an order of magnitude lower during the Brunhes chron in comparison with the early Gauss chron. Decrease in sediment deposition in the late Pliocene probably relates to atmospheric and oceanic reorganization heralding the onset of Quaternary climate change. The high-quality magnetostratigraphy reconstructed from Lake El'gygytgyn sediments provides 12 first-order tie points to pin down the age of the longest paleoclimate record from the continental Arctic.


2015 ◽  
Vol 73 (4) ◽  
pp. 873-880 ◽  
Author(s):  
Dangwei Wang ◽  
Xiaofang Liu ◽  
Zuwen Ji ◽  
Zhandi Dong ◽  
Haihua Hu

By comparing the original particle gradation of sediment from the Three Gorges Reservoir with the single particle gradation, the differences in these two particle gradations showed that there is sediment flocculation in the Three Gorges Reservoir, which can accelerate the sediment deposition rate in the reservoir. In order to determine the influence of flocculation on the sediment settling velocity, sediment was collected at the Three Gorges Reservoir, and the indoor quiescent settling experiment was performed to study the mechanism of sediment flocculation. The experimental results showed that sediments aggregated from single particles into floccules in the settling processes. The single particles smaller than 0.022 mm will participate in the formation of floccules, which accounts for 83% of the total amount of sediment in the Three Gorges Reservoir. Moreover, the degree of sediment flocculation and the increase in sediment settling velocity were directly proportional to the sediment concentration. Taking the average particle size and the median particle size as the representative particle size, respectively, the maximum flocculation factors were calculated to be 3.4 and 5.0. Due to the sediment flocculation, the volume of sediment deposition will increase by 66% when the mass settling flux factor of total sediment had a maximum value of 1.66, suggesting that flocculation has a significant influence on the sediment deposition rate in the Three Gorges Reservoir.


2013 ◽  
Vol 17 (8) ◽  
pp. 3039-3057 ◽  
Author(s):  
N. V. Manh ◽  
B. Merz ◽  
H. Apel

Abstract. Quantity and quality of sediment deposition in complex floodplains are affected by many processes that are typically highly spatially and temporally variable and hard to quantify exactly. The main processes in this context are suspended sediment transport dynamics in rivers, floodplain channel interactions, and internal floodplain processes. In consequence, any point measurement of sedimentation in floodplains contains a high degree of uncertainty, both stemming from measurement errors and from the lack of representativeness for a larger area. However, up to now, uncertainty analyses have not been performed as part of publications on floodplain sedimentation data. Therefore the present work illustrates a field sampling strategy aiming at the monitoring of floodplain deposition and spatial variability on a large scale and at the quantification of uncertainties associated to sediment deposition data. The study was performed in the Mekong Delta, being an example for a large and complex floodplain with a high degree of anthropogenic disturbances. We present a procedure for the quantification of the uncertainty associated to the data, based on the design of the monitoring campaign, sampling procedures, and floodplain characteristics. Sediment traps were distributed strategically over the floodplain in clusters of three mat traps representing one monitoring point. The uncertainty originating from collection of the traps from still ponding water is quantified by lab experiments. The overall uncertainty of the deposition samples and the associated nutrient content is quantified in a Monte Carlo simulation and illustrated by uncertainty bounds. For the study area the results show a very high variability of the annual floodplain deposition (2.2–60 kg m−2) with uncertainty bounds ranging from −61 to +129% relative to overall mean deposition of 11.4 kg m−2. No correlations in the spatial distribution of sedimentation in the floodplains could be found. This is caused by the highly complex channel and dike system and the high number of hydraulic structures. Also, no differences in deposition between floodplain compartments protected with high and low dikes could be detected. However, it can be shown that within single floodplain compartments the spatial deposition variability depends on the dike levels and operation and location of hydraulic structures.


2021 ◽  
Vol 26 (2) ◽  
pp. 229-236
Author(s):  
Dyah Ari Wulandari ◽  
Desyta Ulfiana ◽  
Priyo Nugroho Parmantoro

Reservoir sedimentation can be overcome by reducing the amount of sediment that enters the reservoir, by building check dam. The check dam has more deposited coarse sediment load than fine sediment load. Fine sediment that escapes the check dam will flow further and eventually enter the reservoir pond. Therefore it is necessary to build a building that can capture fine sediments. Construction is planned as a system of sediment trap in irrigation channels. The purpose of this study is to analyze the possibility of applying the sediment trap in the river to deposit sediments that escape the check dam. The analysis begins with the selection of the location of the sediment trap, then calculate the dimensions of the sediment trap and the amount of sediment that has settled. Based on the analysis of the selected dimensions with several combinations of gradation of sediment grains, sediment deposition that occurs ranges from 42 - 68%. So it can be concluded making the sediment trap in the river can be done. However, for the application of these sediment traps further research is needed regarding the dimensions of sediment traps that are most optimal for sediment deposition.


2006 ◽  
Vol 86 (1) ◽  
pp. 45-63 ◽  
Author(s):  
James P. Terry ◽  
Ray A. Kostaschuk ◽  
Sitaram Garimella

2021 ◽  
Vol 80 (10) ◽  
Author(s):  
Christian Conoscenti ◽  
Chiara Martinello ◽  
Alberto Alfonso-Torreño ◽  
Álvaro Gómez-Gutiérrez

2013 ◽  
Vol 9 (5) ◽  
pp. 5077-5122 ◽  
Author(s):  
E. M. Haltia ◽  
N. R. Nowaczyk

Abstract. Paleomagnetic measurements were performed on sediments drilled from ICDP Site 5011-1 in Lake El'gygytgyn (67°30' N, 172°05' E) located in Far East Russian Arctic. The lake fills partly a crater formed by a meteorite impact 3.58 ± 0.04 Ma ago. Sediments from three parallel cores (5011-1A, 5011-1B and 5011-1C), recovered from the middle part of the lake, yielded a total of 355 m of sediment. Sediments are characterized by variable lithology, where intervals of homogenous and laminated sediments alternate, and mass movement deposits of variable thickness occur frequently along the sediment profile. Mineral magnetic investigation made on sediments enclosed in core catchers suggests that magnetic carrier in these sediments is partly maghemitized Ti-rich pseudo-single domain magnetite. Its detrital origin could be shown by mineral magnetic measurements and SEM-EDS analyses performed on mini-sized cylindrical rock samples, polished rock sections, creek sediments and magnetic extracts prepared from them. The intensity of the natural remanent magnetization (NRM) in the sediments is mainly high with a range from about 1 to 1000 mA m−1. Most of the sediments carry a stable magnetization component interpreted as primary depositional remanent magnetization. Characteristic inclination data show alternating intervals of steep positive and negative inclinations that were used to assign magnetic polarity to the lake sediment profile. This was a rather straightforward procedure owing to the mainly high quality of data. The Matuyama/Gauss (2.608 Ma) and Brunhes/Matuyama (0.780 Ma) reversals were recognized in the sediments. Furthermore, during the Gauss chron the Mammoth and Kaena reversed subchrons, and during the Matuyama, the Olduvai and Jaramillo normal subchrons, as well as the Réunion and Cobb Mountain cryptochrons were identified. Sediment deposition rate is highest at the base of the sequence laid down in the beginning of Gauss chron, when deposition rate is approximately 44 cm kyr−1. Sediment deposition decelerates upcore and it is an order of magnitude lower during the Brunhes chron when compared to that in early the Gauss chron. Decrease in sediment deposition in late Pliocene probably relates to atmospheric and oceanic reorganization heralding the onset of Quaternary climate change. The high-quality magnetostratigraphy reconstructed from Lake El'gygytgyn sediments provides 12 tie-points to pin down the age of the longest paleoclimate record from the continental Arctic.


2008 ◽  
Vol 33 (2) ◽  
pp. 221-224
Author(s):  
Mahatma Lanuru ◽  
Ramdina Fitri

Deposition of suspended sediment was measured with sediment traps in shallow coastal waters colonized by Thallasia dominated seagrass in Pannikiang Island, South Sulawesi (Indonesia). The primary objective of this study was to compare the amounts of sediment deposition inside seagrass beds and in adjacent unvegetated area. The traps were placed in a seagrass bed (Station I, II, and III) and in an adjacent unvegetated area (Station IV) measuring the sediment flux on the seabed. The sediment fluxes due to deposition were significantly higher at stations I and II (P < 0.05) and station III (P < 0.01) than at station IV (unvegetated area). Results of this study suggest that sediment deposition was promoted by dense shoots of seagrass. The study provides quantitative evidence for the importance of seagrass bed as sites of sedimentation of fine particles.  


1994 ◽  
Vol 3 (4) ◽  
pp. 409-428 ◽  
Author(s):  
M. Siobhan Fennessy ◽  
Christopher C. Brueske ◽  
William J. Mitsch

Sign in / Sign up

Export Citation Format

Share Document