scholarly journals Fuel and energy enterprises as objects of risk-oriented sanitary-epidemiologic surveillance

2021 ◽  
pp. 65-73
Author(s):  
А.М. Andrishunas ◽  
◽  
S.V. Kleyn ◽  

The present research aims to provide analytical support for the risk-oriented model of sanitary-epidemiologic control over fuel and energy enterprises. The research task were to reveal the most common violations of sanitary-epidemiologic requirements by fuel and energy enterprises; to determine priority environmental indicators that should be included into a program of laboratory support for control and surveillance activities; to estimate actual impacts exerted by fuel and energy enterprises. We established that in 2020 there were totally more than 6 thousand economic entities that performed their activity in the sphere of “Electric energy, gas and steam supply; air conditioning”. Since fuel and energy enterprises tend to be located close to residential areas, violations in the sphere of ambient air protection (Clause 20) involve negative influence on a considerable number of people. In 2020 the greatest number of revealed violation regarding requirements to ambient air quality was registered for heat and power engineering enterprises in the Far East Federal District (FEFD), Siberian FD (SFD), Central FD (CFD), and Ural FD (UFD) and varied from 10.6 to 42.9 %. Average potential health risk (Rlav) per one economic entity amounted to 5.44∙10-4 for heat and power engineering. A share of economic entities dealing with this economic activity and assigned into extremely high and high (the 1st and 2nd accordingly) risk categories as per potential health risk amounts to 21.7 %. A scale of exposure (Mli) for economic entities operating in heat and power engineering can reach 930 thousand people. The greatest share of economic entities belonging to the 1st and 2nd risk categories as per potential health risk is registered in the SFD, Volga FD, CFD, UFD, and FEFD and amounts to 78.5 %. The greatest average potential health risk per one economic entity (Rlav) in the sphere of “Electric energy, gas and steam supply; air conditioning” was registered in the Siberian Federal District and amounted to 9.88∙10-4. The greatest numbers of economic entities operating in the sphere of “Electric energy, gas and steam supply; air conditioning” that belonged to the 1st and 2nd risk categories as per potential health risk are located in the Krasnoyarsk region (37.9 %), Kemerovo region (32.6 %), Tomsk and Omsk regions (29.7 % each).

Author(s):  
DA Chernykh ◽  
EN Bel’skaya ◽  
OV Taseiko

Summary. Introduction: A human health risk assessment is the process to estimate the nature and probability of adverse health effects in humans who may be exposed to various environmental factors. The purpose of the study was to analyze climatic parameters as potential health risk factors for the population of some municipalities of the Krasnoyarsk Region. Methods: We processed meteorological data of the state monitoring network in the Krasnoyarsk Region including the average, maximum, and minimum air temperatures measured every three hours in an automatic mode in accordance with a generally accepted international protocol. Climate characteristics were identified using the method of long-term distribution of average daily temperatures. To assess the climatic features of the Krasnoyarsk Region, we considered such parameters as the average seasonal temperature, dates of air temperature stable transition through zero, temperature waves, extreme daily temperature changes, and bioclimatic indices. Results: We analyzed climate characteristics as potential health risk factors for the population of six cities of the Krasnoyarsk Region (Achinsk, Kansk, Krasnoyarsk, Lesosibirsk, Minusinsk, and Norilsk) for the period from 1919 to 2019. Conclusion: Our findings may be used to establish the relationship between a combination of climatic factors and ambient air quality indices and morbidity and mortality of the local population; they can also contribute to predicting death rates in the region.


1998 ◽  
Vol 38 (12) ◽  
pp. 73-76 ◽  
Author(s):  
B. S. W. Ho ◽  
T.-Y Tam

A total of 64 beach water samples with various bacteriological quality (Grades 1 to 4) were analysed for their bacteriological and parasitological contents (E coli and Giardia cysts respectively). Results indicated that Giardia cysts were detected in less than 10% of the Grade 1 beach water samples with E coli concentrations of <24/100mL. For Grades 2, 3 & 4 beach water samples, Giardia cysts were found, respectively, in 85, 50 and 64% of the samples. Except for one beach water sample which had an unusually high concentration of Giardia cysts (23 cysts/L), they were generally present at moderate concentrations (<10 cysts/L) in all other beach water samples. Despite moderate levels of Giardia cysts present in beach water of different grades, the potential health risk faced by swimmers bathing in local beach water needs to be carefully assessed as Giardia is known to have a low infectious dose.


2010 ◽  
Vol 5 (1) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Niko S. Radulović ◽  
Polina D. Blagojević ◽  
Danielle Skropeta ◽  
Aleksandra R. Zarubica ◽  
Bojan K. Zlatković ◽  
...  

Tansy, Tanacetum macrophyllum (Waldst. & Kit.) Sch. Bip., is often misidentified by herb collectors as yarrow, Achillea grandifolia Friv. With the former, cases of poisoning induced by its ingestion are well documented, but the latter is widely used for ethnopharmacological purposes. The aim of this study was to estimate, based on the volatile metabolite profiles of the two species, the potential health risk connected with their misidentification. GC and GC-MS analysis of the essential oils hydrodistilled using a Clevenger-type apparatus from A. grandifolia, T. macrophyllum, and two plant samples (reputedly of A. grandifolia, but in fact mixtures of A. grandifolia and T. macrophyllum) obtained from a local market, resulted in the identification of 215 different compounds. The main constituents of A. grandifolia oil were ascaridole (15.5%), α-thujone (7.5%), camphor (15.6%), borneol (5.2%) and (Z)-jasmone (6.4%), and of T. macrophyllum oil, 1,8-cineole (8.6%), camphor (6.4%), borneol (9.1%), isobornyl acetate (9.5%), copaborneol (4.2%) and γ-eudesmol (6.2%). The compositions of the oils extracted from the samples obtained from the market were intermediate to those of A. grandifolia and T. macrophyllum. Significant differences in the corresponding volatile profiles and the literature data concerning the known activities of the pure constituents of the oils, suggested that the pharmacological action of the investigated species (or their unintentional mixtures) would be notably different. It seems, however, that misidentification of T. macrophyllum as A. grandifolia does not represent a health risk and that the absence of the toxic α-thujone from T. macrophyllum oil may in fact be regarded as a benefit.


Sign in / Sign up

Export Citation Format

Share Document