scholarly journals An overview of methods used for quantification of heavy metal contents in vegetal samples

2021 ◽  
Vol 3 (2) ◽  
pp. 7-15
Author(s):  
Gina Vasile Scaeteanu ◽  
◽  
Rodica Maria Majdar ◽  
Andrei Mot ◽  

Continuous monitoring of heavy metals content in vegetal products is a priority for food control and a risk assessment strategy for human health. Having in view the importance of heavy metals surveillance, the aim of this paper is to identify, on the basis of literature data, the most suitable procedures and techniques used for accurate determination of them in vegetal samples. In most cases, quantification of heavy metals in the vegetal matrix is preceded by digestion performed through different protocols chosen carefully because this is a critical step for obtaining accurate results. Among most used techniques for heavy metals’ assessment from vegetal products reported by literature it worth to be mentioned: atomic absorption spectrometry (AAS), inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma - optical emission spectrometry (ICP-OES), X-ray fluorescence (XRF), neutron activation analysis (NAA), anodic stripping voltammetry (ASV).

2013 ◽  
Vol 32 (1) ◽  
pp. 265 ◽  
Author(s):  
Violeta Ivanova-Petropulos ◽  
Helmar Wiltsche ◽  
Trajče Stafilov ◽  
Marina Stefova ◽  
Herber Motter ◽  
...  

Major, minor, and trace elements in wines from the Republic of Macedonia were determined in this study. Both inductively coupled plasma–mass spectrometry (ICP-MS) and inductively coupled plasma– optical emission spectrometry (ICP-OES) were used for accurate determination of the concentration of 42 elements (Ag, Al, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Ho, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Pr, S, Sm, Tb, Ti, Tl, Tm, U, V, Yb, Zn, Zr) in 25 Macedonian white, rose, and red wines from different wine regions. By means of factor and cluster analyses, the wines were discriminated according to wine type (white vs. red) and geographical origin. The main discriminant elements were B, Ba, Ca, Fe, Mg, Mn, P, and S. 


Author(s):  
Sayyed Mohammad Ali Noori ◽  
Mohammad Hashemi ◽  
Sajjad Ghasemi

Abstract: Saffron is one of the most expensive spices in the world, and its popularity as a tasty food additive is spreading rapidly through many cultures and cuisines. Minerals and heavy metals are minor components found in saffron, which play a key role in the identification of the geographical origin, quality control, and food traceability, while they also affect human health. The chemical elements in saffron are measured using various analytical methods, such as techniques based on spectrometry or spectroscopy, including atomic emission spectrometry, atomic absorption spectrometry, inductively coupled plasma optical emission spectrometry, and inductively coupled plasma mass spectrometry. The present study aimed to review the published articles about heavy metals and minerals in saffron across the world. To date, 64 chemical elements have been found in different types of saffron, which could be divided into three groups of macro-elements, trace elements, and heavy metals (trace elements with a lower gravity/greater than five times that of water and other inorganic sources). Furthermore, the chemical elements in the saffron samples of different countries have a wide range of concentrations. These differences may be affected by geographical condition such as physicochemical properties of the soil, weather and other environmental conditions like saffron cultivation and its genotype.


2020 ◽  
Vol 20 (3) ◽  
pp. 381-398
Author(s):  
Afieh Tatar ◽  
Masood Alipour-Asll

The Tazareh mine in the eastern Alborz coalfield is one of the most important coal-producing areas in Iran and contains medium volatile (19.1–31.5%), low sulfur (0.015–0.491%) and variable ash yield (3–31.5%) bituminous coal. In this research, a total of 21 samples were collected from the Tazareh coal layers, footwall and hanging wall. The concentrations of rare earth elements (REEs) and other elements were determined by inductively coupled-plasma mass spectrometry (ICP-MS) and inductively coupled plasma-optical emission spectrometry (ICP-OES). Additionally, traditional features of coal and host rocks were studied by X-ray diffraction (XRD) and petrographic methods. The concentration coefficient (CC) of Tazareh coal samples show that Sc (CC = 2.71), Be (CC = 2.68) and Ni (CC = 2.30) are slightly enriched, Li, Cr, Pb, Sb, V, Cs, As, Co, Cu, Nb, Y, Rb, Tl, REE, Zr, Zn, Ta and Th (0.5 < CC < 2) are normal, and concentrations of remaining trace elements are lower than the average world hard coals. The NASC-normalized REEs pattern and (La/Yb)n, (La/Sm)n, (Gd/Yb)n, and (La/Lu)n ratios in the Tazareh coal confirm that the LREEs are enriched relative to HREEs, and comparatively, the degree of LREE enrichment of coal is lower than that of coal-bearing shale and argillaceous shale. Coal-bearing strata were deposited under oxic conditions in a warm-humid climate. The average content of REE + Y in Tazareh coal (58 ppm) is lower than world coals (83 ppm), while Sc is enriched.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3267
Author(s):  
Gigliola Lusvardi ◽  
Francesca Sgarbi Stabellini ◽  
Roberta Salvatori

(1) Background: valuation of the bioactivity and cytocompatibility of P2O5-free and CeO2 doped glasses. (2) Methods: all glasses are based on the Kokubo (K) composition and prepared by a melting method. Doped glassed, K1.2, K3.6 and K5.3 contain 1.2, 3.6, and 5.3 mol% of CeO2. Bioactivity and cytotoxicity tests were carried out in simulated body fluid (SBF) solution and murine osteocyte (MLO-Y4) cell lines, respectively. Leaching of ions concentration in SBF was determined by inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP-OES). The surface of the glasses were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. (3) Results: P2O5-free cerium doped glasses are proactive according to European directives. Cerium increases durability and retards, but does not inhibit, (Ca10(PO4)6(OH)2, HA) formation at higher cerium amounts (K3.6 and K5.3); however, cell proliferation increases with the amount of cerium especially evident for K5.3. (4) Conclusions: These results enforce the use of P2O5-free cerium doped bioactive glasses as a new class of biomaterials.


Sign in / Sign up

Export Citation Format

Share Document