scholarly journals Fracture Network and Fluid Flow Imaging for Enhanced Geothermal Systems Applications from Multi-Dimensional Electrical Resistivity Structure

2016 ◽  
Author(s):  
Philip E. Wannamaker
2020 ◽  
Author(s):  
Kyung Won Chang ◽  
Gungor Beskardes ◽  
Chester Weiss

<p>Hydraulic stimulation is the process of initiating fractures in a target reservoir for subsurface energy resource management with applications in unconventional oil/gas and enhanced geothermal systems. The fracture characteristics (i.e., number, size and orientation with respect to the wellbore) determines the modified permeability field of the host rock and thus, numerical simulations of flow in fractured media are essential for estimating the anticipated change in reservoir productivity. However, numerical modeling of fluid flow in highly fractured media is challenging due to the explosive computational cost imposed by the explicit discretization of fractures at multiple length scales. A common strategy for mitigating this extreme cost is to crudely simplify the geometry of fracture network, thereby neglecting the important contributions made by all elements of the complex fracture system.</p><p>The proposed “Hierarchical Finite Element Method” (Hi-FEM; Weiss, Geophysics, 2017) reduces the comparatively insignificant dimensions of planar- and curvilinear-like features by translating them into integrated hydraulic conductivities, thus enabling cost-effective simulations with requisite solutions at material discontinuities without defining ad-hoc, heuristic, or empirically-estimated boundary conditions between fractures and the surrounding formation. By representing geometrical and geostatistical features of a given fracture network through the Hi-FEM computational framework, geometrically- and geomechanically-dependent fluid flow properly can now be modeled economically both within fractures as well as the surrounding medium, with a natural “physics-informed” coupling between the two.</p><p>SNL is managed and operated by NTESS under DOE NNSA contract DE-NA0003525.</p>


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5725
Author(s):  
Rafał Moska ◽  
Krzysztof Labus ◽  
Piotr Kasza

Hydraulic fracturing (HF) is a well-known stimulation method used to increase production from conventional and unconventional hydrocarbon reservoirs. In recent years, HF has been widely used in Enhanced Geothermal Systems (EGS). HF in EGS is used to create a geothermal collector in impermeable or poor-permeable hot rocks (HDR) at a depth formation. Artificially created fracture network in the collector allows for force the flow of technological fluid in a loop between at least two wells (injector and producer). Fluid heats up in the collector, then is pumped to the surface. Thermal energy is used to drive turbines generating electricity. This paper is a compilation of selected data from 10 major world’s EGS projects and provides an overview of the basic elements needed to design HF. Authors were focused on two types of data: geological, i.e., stratigraphy, lithology, target zone deposition depth and temperature; geophysical, i.e., the tectonic regime at the site, magnitudes of the principal stresses, elastic parameters of rocks and the seismic velocities. For each of the EGS areas, the scope of work related to HF processes was briefly presented. The most important HF parameters are cited, i.e., fracturing pressure, pumping rate and used fracking fluids and proppants. In a few cases, the dimensions of the modeled or created hydraulic fractures are also provided. Additionally, the current state of the conceptual work of EGS projects in Poland is also briefly presented.


2020 ◽  
Author(s):  
Giovanni Luca Cardello ◽  
Michel Meyer

<p>Karst geothermal systems fluid flow is dominated by structurally controlled porosity, which constrains the paths of aquifer recharge and the upwell of geothermal fluids. In fold-and-thrust belt settings associated with continental collision, geothermal fields occur within basins generally interested by low-enthalpy geothermal systems. Despite that, the deeper and warmer levels of multiply stratified aquifers within the detached sedimentary covers are vertically connected to shallower depths by high-angle faults, thus making of them interesting targets for exploration.</p><p>In the frame of the geothermal exploration steered by the Geneva Canton, this work aims at determining how fracture connectivity, orientation and permeability anisotropy has implications on fluid flow within high-angle faults. Recent software development (e.g., FracPaQ) allows to quantify such interconnection providing insights into spatial variation of multiscale fault-controlled porosity in order to have dynamic feedbacks between fluid flow, permeability rise/fall. We use the inner Jura fold-and-thrust belt and the other carbonate relieves surrounding Geneva as an outcrop analogue for the deeper carbonate reservoir, lying at depth beneath the siliciclastic Molasse deposits. Hereby, we present new structural and morphostructural lineament maps and scan box analyses from outcrops that provide a multiscale analysis on fracturing across the study area. The sampling sites are representative of fractured fold hinges constituted of Mesozoic carbonates crossed by high-angle faults.</p><p>The map analysis show that the late Oligocene-early Miocene growing carbonate anticlines are shaped by a series of fore- and back-thrusts resulting in salient-and-recess curvy thrusts accommodating different amount of shortening across high-angle tear-faults. With the support of high-resolution LIDAR images, we observe that at the large scale (e.g., five kilometers), as fault zone broadens across transfer zones, the background fracture network is more intense at the salient flanks. Major faults occur as segmented, thus not providing near-surface structure capable of giving any earthquake significantly larger than the already measured ones (e.g., M<sub>L</sub> 5.3, Epagny earthquake 1996). Our preliminary results identify the W- and the NNW- striking systems strike-slip faults as the preferred patterns of fluid flow. Cross-cutting relationships vary with their position into the bended belt, thus making them suitable to be multiply reactivated during the Jura arc indentation. At the outcrop scale, the most mature fault zones associated with larger displacement are characterized by high fracture intensity and connectivity. Field evidences show that NNW- and W/NW- striking systems are vein-rich whereas N- and NE-striking systems are accompanied by open fracture sets although they may work with opposite fluid-flow vertical directivity. Mechanical and regional chronological development of the fracture network is also discussed as related to the regional fault evolution.</p>


Geophysics ◽  
2011 ◽  
Vol 76 (6) ◽  
pp. WC181-WC198 ◽  
Author(s):  
Mark W. McClure ◽  
Roland N. Horne

We describe a numerical investigation of seismicity induced by injection into a single isolated fracture. Injection into a single isolated fracture is a simple analog for shear stimulation in enhanced geothermal systems (EGS) during which water is injected into fractured, low permeability rock, triggering slip on preexisting large scale fracture zones. A model was developed and used that couples (1) fluid flow, (2) rate and state friction, and (3) mechanical stress interaction between fracture elements. Based on the results of this model, we propose a mechanism to describe the process by which the stimulated region grows during shear stimulation, which we refer to as the sequential stimulation (SS) mechanism. If the SS mechanism is realistic, it would undermine assumptions that are made for the estimation of the minimum principal stress and unstimulated hydraulic diffusivity. We investigated the effect of injection pressure on induced seismicity. For injection at constant pressure, there was not a significant dependence of maximum event magnitude on injection pressure, but there were more relatively large events for higher injection pressure. Decreasing injection pressure over time significantly reduced the maximum event magnitude. Significant seismicity occurred after shut-in, which was consistent with observations from EGS stimulations. Production of fluid from the well immediately after injection inhibited shut-in seismic events. The results of the model in this study were found to be broadly consistent with results from prior work using a simpler treatment of friction that we refer to as static/dynamic. We investigated the effect of shear-induced pore volume dilation and the rate and state characteristic length scale, [Formula: see text]. Shear-induced pore dilation resulted in a larger number of lower magnitude events. A larger value of [Formula: see text] caused slip to occur aseismically.


2020 ◽  
Author(s):  
Taghi Shirzad ◽  
Stanisław Lasocki ◽  
Beata Orlecka‐Sikora

<p> In Enhanced Geothermal Systems pressurized injections play a role in developing fracture networks and enhancing the water transmissivity. However, the fractures may also coalesce into undesired pathways for fluid migration to enable the fluids to reach pre-existing faults. The properties of observed seismicity can shed some light on the fracture network development and from the standpoint of the possibility to form such undesired pathways. However, to reach this goal the seismic events should be well parameterized. In particular, the information on fault plane mechanisms is essential, which is often not readily accessible. In this study, we use the rupturing process with an accurate P-wave velocity model, which is obtained by the first arrival P-wave tomography approach, to compensate for an eventual lack of source mechanisms of micro-events. For this purpose, four characteristics of the sources (final/average displacement on the fault, the dimension of fault, rupture velocity and particle velocity) can be considered. A 3D model is defined around the hypocenter of each event, so that the size of this model directly depends on the event magnitude. After calculating the arrival time of the selected phase (e.g., P, S, p or s) for each station, all waveforms are then aligned, and stacked by different stacking (e.g., phase weight, N<sup>th</sup>-root) methods. By considering the maximum amplitude of the stacked waveform which is stimulated by each grid, the rupturing plane and the average velocity of rupturing can be obtained. This information of source can be replaced by the double-couple mechanism to investigate the fractures linking and tracking.</p><p>This work was supported under the <em>S4CE</em>: "Science for Clean Energy" project, which has received funding from the European Union’s Horizon 2020 research and innovation program, under grant agreement No 764810.</p>


Sign in / Sign up

Export Citation Format

Share Document