scholarly journals Flaw Tolerance of Octet Truss Lattices with Random Flaws

2020 ◽  
Author(s):  
S E Watts
Keyword(s):  
Author(s):  
Yifan Li ◽  
Huaiyuan Gu ◽  
Martyn Pavier ◽  
Harry Coules

Octet-truss lattice structures can be used for lightweight structural applications due to their high strength-to-density ratio. In this research, octet-truss lattice specimens were fabricated by stereolithography additive manufacturing with a photopolymer resin. The mechanical properties of this structure have been examined in three orthogonal orientations under the compressive load. Detailed comparison and description were carried out on deformation mechanisms and failure modes in different lattice orientations. Finite element models using both beam elements and three-dimensional solid elements were used to simulate the compressive response of this structure. Both the load reaction and collapse modes obtained in simulations were compared with test results. Our results indicate that three-dimensional continuum element models are required to accurately capture the behaviour of real trusses, taking into account the effects of finite-sized beams and joints.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2239
Author(s):  
Nicholas Rodriguez ◽  
Samantha Ruelas ◽  
Jean-Baptiste Forien ◽  
Nikola Dudukovic ◽  
Josh DeOtte ◽  
...  

Recent advances in additive manufacturing, specifically direct ink writing (DIW) and ink-jetting, have enabled the production of elastomeric silicone parts with deterministic control over the structure, shape, and mechanical properties. These new technologies offer rapid prototyping advantages and find applications in various fields, including biomedical devices, prosthetics, metamaterials, and soft robotics. Stereolithography (SLA) is a complementary approach with the ability to print with finer features and potentially higher throughput. However, all high-performance silicone elastomers are composites of polysiloxane networks reinforced with particulate filler, and consequently, silicone resins tend to have high viscosities (gel- or paste-like), which complicates or completely inhibits the layer-by-layer recoating process central to most SLA technologies. Herein, the design and build of a digital light projection SLA printer suitable for handling high-viscosity resins is demonstrated. Further, a series of UV-curable silicone resins with thiol-ene crosslinking and reinforced by a combination of fumed silica and MQ resins are also described. The resulting silicone elastomers are shown to have tunable mechanical properties, with 100–350% elongation and ultimate tensile strength from 1 to 2.5 MPa. Three-dimensional printed features of 0.4 mm were achieved, and complexity is demonstrated by octet-truss lattices that display negative stiffness.


Author(s):  
M. Carraturo ◽  
G. Alaimo ◽  
S. Marconi ◽  
E. Negrello ◽  
E. Sgambitterra ◽  
...  

AbstractAdditive manufacturing (AM), and in particular selective laser melting (SLM) technology, allows to produce structural components made of lattice structures. These kinds of structures have received a lot of research attention over recent years due to their capacity to generate easy-to-manufacture and lightweight components with enhanced mechanical properties. Despite a large amount of work available in the literature, the prediction of the mechanical behavior of lattice structures is still an open issue for researchers. Numerical simulations can help to better understand the mechanical behavior of such a kind of structure without undergoing long and expensive experimental campaigns. In this work, we compare numerical and experimental results of a uniaxial tensile test for stainless steel 316L octet-truss lattice specimen. Numerical simulations are based on both the nominal as-designed geometry and the as-build geometry obtained through the analysis of µ-CT images. We find that the use of the as-build geometry is fundamental for an accurate prediction of the mechanical behavior of lattice structures.


2005 ◽  
Vol 88 (2) ◽  
pp. 287-292 ◽  
Author(s):  
John K. Montgomery ◽  
K. T. Faber
Keyword(s):  

1994 ◽  
Vol 13 (2) ◽  
pp. 149-157 ◽  
Author(s):  
Hongda Cai ◽  
Nitin P. Padture ◽  
Bryan M. Hooks ◽  
Brian R. Lawn

Author(s):  
Poh-Sang Lam ◽  
Robert L. Sindelar

A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. The canister may be subject to service-induced degradation when it is exposed to aggressive atmospheric environments during a possibly long-term storage period if the permanent repository is yet to be identified and readied. Because heat treatment for stress relief is not required for the construction of an MPC, stress corrosion cracking may be initiated on the canister surface in the welds or in the heat affected zone. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defects be detected by periodic Inservice Inspection. The first-order instability flaw sizes has been determined with bounding flaw configurations, that is, through-wall axial or circumferential cracks, and part-through-wall long axial flaw or 360° circumferential crack. The procedure recommended by the American Petroleum Institute (API) 579 Fitness-for-Service code (Second Edition) is used to estimate the instability crack length or depth by implementing the failure assessment diagram (FAD) methodology. The welding residual stresses are mostly unknown and are therefore estimated with the API 579 procedure. It is demonstrated in this paper that the residual stress has significant impact on the instability length or depth of the crack. The findings will limit the applicability of the flaw tolerance obtained from limit load approach where residual stress is ignored and only ligament yielding is considered.


2021 ◽  
Author(s):  
Gary L. Stevens

Abstract As part of the development of American Society of Mechanical Engineers Code Case N-809 [1], a series of sample calculations were performed to gain experience in using the Code Case methods and to determine the impact on a typical application. Specifically, the application of N-809 in a fatigue crack growth analysis was evaluated for a large diameter austenitic pipe in a pressurized water reactor coolant system main loop using the current analytical evaluation procedures in Appendix C of Section XI of the ASME Code [2]. The same example problem was previously used to evaluate the reference fatigue crack growth curves during the development of N-809, as well as to compare N-809 methods to similar methods adopted by the Japan Society of Mechanical Engineers. The previous example problem used to evaluate N-809 during its development was embellished and has been used to evaluate additional proposed ASME Code changes. For example, the Electric Power Research Institute investigated possible improvements to ASME Code, Section XI, Nonmandatory Appendix L [3], and the previous N-809 example problem formed the basis for flaw tolerance calculations to evaluate those proposed improvements [4]. In addition, the ASME Code Section XI, Working Group on Flaw Evaluation Reference Curves continues to evaluate additional research data and related improvements to N-809 and other fatigue crack growth rate methods. As a part of these Code investigations, EPRI performed calculations for the Appendix L flaw tolerance sample problem using three international codes and standards to evaluate fatigue crack growth (da/dN) curves for PWR environments: (1) ASME Code Case N-809, (2) JSME Code methods [5], and (3) the French RSE-M method [6]. The results of these comparative calculations are presented and discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document