Steam-Cooled Gas Turbine Casings, Struts, and Disks in a Reheat Gas Turbine Combined Cycle: Part I—Compressor and Combustor

1983 ◽  
Vol 105 (4) ◽  
pp. 844-850 ◽  
Author(s):  
I. G. Rice

High-cycle pressure-ratio (38–42) gas turbines being developed for future aircraft and, in turn, industrial applications impose more critical disk and casing cooling and thermal-expansion problems. Additional attention, therefore, is being focused on cooling and the proper selection of materials. Associated blade-tip clearance control of the high-pressure compressor and high-temperature turbine is critical for high performance. This paper relates to the use of extracted steam from a steam turbine as a coolant in a combined cycle to enhance material selection and to control expansion in such a manner that the cooling process increases combined-cycle efficiency, gas turbine output, and steam turbine output.

1983 ◽  
Vol 105 (4) ◽  
pp. 851-858 ◽  
Author(s):  
I. G. Rice

High-cycle pressure-ratio (38–42) gas turbines being developed for future aircraft and, in turn, industrial applications impose more critical disk and casing cooling and thermal-expansion problems. Additional attention, therefore, is being focused on cooling and the proper selection of materials. Associated blade-tip clearance control of the high-pressure compressor and high-temperature turbine is critical for high performance. This paper relates to the use of extracted steam from a steam turbine as a coolant in a combined cycle to enhance material selection and to control expansion in such a manner that the cooling process increases combined-cycle efficiency, gas turbine output and steam turbine output.


Author(s):  
Meherwan P. Boyce

The performance analysis of the new generation of Gas Turbines in combined cycle operation is complex and presents new problems, which have to be addressed. The new units operate at very high turbine firing temperatures. Thus variation in this firing temperature significantly affects the performance and life of the components in the hot section of the turbine. The compressor pressure ratio is high which leads to a very narrow operation margin, thus making the turbine very susceptible to compressor fouling. The turbines are also very sensitive to backpressure exerted on them by the heat recovery steam generators. The pressure drop through the air filter also results in major deterioration of the performance of the turbine. The performance of the combined cycle is also dependent on the steam turbine performance. The steam turbine is dependent on the pressure, temperature, and flow generated in the heat recovery steam generator, which in turn is dependent on the turbine firing temperature, and the air mass flow through the gas turbine. It is obvious that the entire system is very intertwined and that deterioration of one component will lead to off-design operation of other components, which in most cases leads to overall drop in cycle efficiency. Thus, determining component performance and efficiency is the key to determining overall cycle efficiency. Thermodynamic modeling of the plant with individual component analysis is not only extremely important in optimizing the overall performance of the plant but in also determining life cycle considerations.


Author(s):  
A.A. Filimonova ◽  
◽  
N.D. Chichirova ◽  
A.A. Chichirov ◽  
A.A. Batalova ◽  
...  

The article provides an overview of modern high-performance combined-cycle plants and gas turbine plants with waste heat boilers. The forecast for the introduction of gas turbine equipment at TPPs in the world and in Russia is presented. The classification of gas turbines according to the degree of energy efficiency and operational characteristics is given. Waste heat boilers are characterized in terms of design and associated performance and efficiency. To achieve high operating parameters of gas turbine and boiler equipment, it is necessary to use, among other things, modern water treatment equipment. The article discusses modern effective technologies, the leading place among which is occupied by membrane, and especially baromembrane methods of preparing feed water-waste heat boilers. At the same time, the ion exchange technology remains one of the most demanded at TPPs in the Russian Federation.


2015 ◽  
Vol 656-657 ◽  
pp. 113-118
Author(s):  
Hsiu Mei Chiu ◽  
Po Chuang Chen ◽  
Yau Pin Chyou ◽  
Ting Wang

The effect of synthetic natural gas (SNG) and mixture of syngas and SNG fed to Natural Gas Combined-Cycle (NGCC) plants is presented in this study via a system-level simulation model. The commercial chemical process simulator, Pro/II®V8.1.1, was used in the study to build the analysis model. The NGCC plant consists of gas turbine (GT), heat recovery steam generator (HRSG) and steam turbine (ST). The study envisages two analyses as the basic and feasibility cases. The former is the benchmark case which is verified by the reference data with the GE 7FB gas turbine. According to vendor’s specification, the typical net plant efficiency of GE 7FB NGCC with two gas turbines to one steam turbine is 57.5% (LHV), and the efficiency is the benchmark in the simulation model built in the study. The latter introduces a feasibility study with actual parameters in Taiwan. The SNG-fed GE 7FB based combined-cycle is evaluated, and the mixture of SNG and syngas is also evaluated to compare the difference of overall performance between the two cases. The maximum ratio of syngas to SNG is 0.14 due to the constraint for keeping the composition of methane at a value of 80 mol%, to meet the minimum requirement of NG in Taiwan. The results show that the efficiency in either case of SNG or mixture of SNG and syngas is slightly lower than the counterpart in the benchmark one. Because the price of natural gas is much higher than that of coal, it results in higher idle capacity of NGCC. The advantage of adopting SNG in Taiwan is that it could increase the capacity factor of combined-cycles in Taiwan. The study shows a possible way to use coal and reduce the CO2emission, since coal provides nearly half of the electricity generation in Taiwan in recent years.


Author(s):  
Satoshi Hada ◽  
Masanori Yuri ◽  
Junichiro Masada ◽  
Eisaku Ito ◽  
Keizo Tsukagoshi

MHI recently developed a 1600°C class J-type gas turbine, utilizing some of the technologies developed in the National Project to promote the development of component technology for the next generation 1700°C class gas turbine. This new frame is expected to achieve higher combined cycle efficiency and will contribute to reduce CO2 emissions. The target combined cycle efficiency of the J type gas turbine will be above 61.5% (gross, ISO standard condition, LHV) and the 1on1 combined cycle output will reach 460MW for 60Hz engine and 670MW for 50Hz engine. This new engine incorporates: 1) A high pressure ratio compressor based on the advanced M501H compressor, which was verified during the M501H development in 1999 and 2001. 2) Steam cooled combustor, which has accumulated extensive experience in the MHI G engine (> 1,356,000 actual operating hours). 3) State-of-art turbine designs developed through the 1700°C gas turbine component technology development program in Japanese National Project for high temperature components. This paper discusses the technical features and the updated status of the J-type gas turbine, especially the operating condition of the J-type gas turbine in the MHI demonstration plant, T-Point. The trial operation of the first M501J gas turbine was started at T-point in February 2011 on schedule, and major milestones of the trial operation have been met. After the trial operation, the first commercial operation has taken place as scheduled under a predominantly Daily-Start-and-Stop (DSS) mode. Afterward, MHI performed the major inspection in October 2011 in order to check the mechanical condition, and confirmed that the hot parts and other parts were in sound condition.


Author(s):  
Ivan G. Rice

Interest in the reheat-gas turbine (RHGT) as a way to improve combined-cycle efficiency is gaining momentum. Compression intercooling makes it possible to readily increase the reheat-gas-turbine cycle-pressure ratio and at the same time increase gas-turbine output; but at the expense of some combined-cycle efficiency and mechanical complexity. This paper presents a thermodynamic analysis of the intercooled cycle and pinpoints the proper intercooling pressure range for minimum combined-cycle-efficiency loss. At the end of the paper two-intercooled reheat-gas-turbine configurations are presented.


Author(s):  
Kazuhiko Tanimura ◽  
Naoki Murakami ◽  
Akinori Matsuoka ◽  
Katsuhiko Ishida ◽  
Hiroshi Kato ◽  
...  

The M7A-03 gas turbine, an 8 MW class, single shaft gas turbine, is the latest model of the Kawasaki M7A series. Because of the high thermal efficiency and the high exhaust gas temperature, it is particularly suitable for distributed power generation, cogeneration and combined-cycle applications. About the development of M7A-03 gas turbine, Kawasaki has taken the experience of the existing M7A-01 and M7A-02 series into consideration, as a baseline. Furthermore, the latest technology of aerodynamics and cooling design, already applied to the 18 MW class Kawasaki L20A, released in 2000, has been applied to the M7A-03. Kawasaki has adopted the design concept for achieving reliability within the shortest possible development period by selecting the same fundamental engine specifications of the existing M7A-02 – mass air flow rate, pressure ratio, TIT, etc. However, the M7A-03 has been attaining a thermal efficiency of greater than 2.5 points higher and an output increment of over 660 kW than the M7A-02, by the improvement in aerodynamic performance of the compressor, turbine and exhaust diffuser, improved turbine cooling, and newer seal technology. In addition, the NOx emission of the combustor is low and the M7A-03 has a long service life. These functions make long-term continuous operation possible under various environmental restraints. Lower life cycle costs are achieved by the engine high performance, and the high-reliability resulting from simple structure. The prototype M7A-03 gas-turbine development test started in the spring of 2006 and it has been confirmed that performance, mechanical characteristics, and emissions have achieved the initial design goals.


Author(s):  
F. L. Robson ◽  
D. J. Seery

The Department of Energy’s Federal Energy Technology Center (FETC) is sponsoring the Combustion 2000 Program aimed at introducing clean and more efficient advanced technology coal-based power systems in the early 21st century. As part of this program, the United Technologies Research Center has assembled a seven member team to identify and develop the technology for a High Performance Power Systems (HIPPS) that will provide in the near term, 47% efficiency (HHV), and meet emission goals only one-tenth of current New Source Performance Standards for coal-fired power plants. In addition, the team is identifying advanced technologies that could result in HIPPS with efficiencies approaching 55% (HHV). The HIPPS is a combined cycle that uses a coal-fired High Temperature Advanced Furnace (HITAF) to preheat compressor discharge air in both convective and radiant heaters. The heated air is then sent to the gas turbine where additional fuel, either natural gas or distillate, is burned to raise the temperature to the levels of modern gas turbines. Steam is raised in the HITAF and in a Heat Recovery Steam Generator for the steam bottoming cycle. With state-of-the-art frame type gas turbines, the efficiency goal of 47% is met in a system with more than two-thirds of the heat input furnished by coal. By using advanced aeroderivative engine technology, HIPPS in combined-cycle and Humid Air Turbine (HAT) cycle configurations could result in efficiencies of over 50% and could approach 55%. The following paper contains descriptions of the HIPPS concept including the HITAF and heat exchangers, and of the various gas turbine configurations. Projections of HIPPS performance, emissions including significant reduction in greenhouse gases are given. Application of HIPPS to repowering is discussed.


2005 ◽  
Vol 127 (2) ◽  
pp. 369-374 ◽  
Author(s):  
Y. Fukuizumi ◽  
J. Masada ◽  
V. Kallianpur ◽  
Y. Iwasaki

Mitsubishi completed design development and verification load testing of a steam-cooled M501H gas turbine at a combined cycle power plant at Takasago, Japan in 2001. Several advanced technologies were specifically developed in addition to the steam-cooled components consisting of the combustor, turbine blades, vanes, and the rotor. Some of the other key technologies consisted of an advanced compressor with a pressure ratio of 25:1, active clearance control, and advanced seal technology. Prior to the M501H, Mitsubishi introduced cooling-steam in “G series” gas turbines in 1997 to cool combustor liners. Recently, some of the advanced design technologies from the M501H gas turbine were applied to the G series gas turbine resulting in significant improvement in output and thermal efficiency. A noteworthy aspect of the technology transfer is that the upgraded G series M701G2 gas turbine has an almost equivalent output and thermal efficiency as H class gas turbines while continuing to rely on conventional air cooling of turbine blades and vanes, and time-proven materials from industrial gas turbine experience. In this paper we describe the key design features of the M701G2 gas turbine that make this possible such as the advanced 21:1 compressor with 14 stages, an advanced premix DLN combustor, etc., as well as shop load test results that were completed in 2002 at Mitsubishi’s in-house facility.


1997 ◽  
Vol 119 (2) ◽  
pp. 298-304 ◽  
Author(s):  
A. R. Smith ◽  
J. Klosek ◽  
D. W. Woodward

The commercialization of Integrated Gasification Combined Cycle (IGCC) Power has been aided by concepts involving the integration of a cryogenic air separation unit (ASU) with the gas turbine combined-cycle module. Other processes, such as coal-based ironmaking and combined power/industrial gas production facilities, can also benefit from the integration. It is known and now widely accepted that an ASU designed for “elevated pressure” service and optimally integrated with the gas turbine can increase overall IGCC power output, increase overall efficiency, and decrease the net cost of power generation when compared to nonintegrated facilities employing low-pressure ASUs. The specific gas turbine, gasification technology, NOx emission specification, and other site specific factors determine the optimal degree of compressed air and nitrogen stream integration. Continuing advancements in both air separation and gas turbine technologies offer new integration opportunities to improve performance and reduce costs. This paper reviews basic integration principles and describes next-generation concepts based on advanced high pressure ratio gas turbines, Humid Air Turbine (HAT) cycles and integration of compression heat and refrigeration sources from the ASU. Operability issues associated with integration are reviewed and control measures are described for the safe, efficient, and reliable operation of these facilities.


Sign in / Sign up

Export Citation Format

Share Document