THE SINTERING OF BeO TO VARIABLE DENSITIES AND GRAIN SIZES

1963 ◽  
Author(s):  
E Duderstadt ◽  
J White
Keyword(s):  
Author(s):  
Z.L. Wang ◽  
J. Bentley ◽  
R.E. Clausing ◽  
L. Heatherly ◽  
L.L. Horton

It has been found that the abrasion of diamond-on-diamond depends on the crystal orientation. For a {100} face, the friction coefficient for sliding along <011> is much higher than that along <001>. For a {111} face, the abrasion along <11> is different from that in the reverse direction <>. To interpret these effects, a microcleavage mechanism was proposed in which the {100} and {111} surfaces were assumed to be composed of square-based pyramids and trigonal protrusions, respectively. Reflection electron microscopy (REM) has been applied to image the microstructures of these diamond surfaces.{111} surfaces of synthetic diamond:The synthetic diamonds used in this study were obtained from the De Beers Company. They are in the as-grown condition with grain sizes of 0.5-1 mm without chemical treatment or mechanical polishing. By selecting a strong reflected beam in the reflection high-energy electron diffraction (RHEED) pattern, the dark-field REM image of the surface is formed (Fig. 1).


2000 ◽  
Vol 28 (3) ◽  
pp. 178-195 ◽  
Author(s):  
N. Amino ◽  
Y. Uchiyama

Abstract In this study, the relationships between friction and viscoelastic properties such as loss tangent tan δ and storage modulusE′ were examined. Wet skid resistance was measured using the British Pendulum Tester. The rubber specimens were rubbed againstfive silicone carbide cloths of differing abrasive grain sizes. The viscoelastic properties of the rubber specimens were measured with a viscoelasticspectrometer. From the data on wet skid resistance and viscoelastic properties, it is found that the coefficient of friction μ varies as follows:           μ = a + b · tan δ/E′ where a and b are constants. Tan δ/E′ was related to the hysteresis term of friction, and the μ-frequency curves were compared with the tan δ/E′ –frequency curves.


Author(s):  
Dmitry Korzinin ◽  
Dmitry Korzinin ◽  
Igor Leontiev ◽  
Igor Leontiev

Modelling study of the equilibrium profiles formed on sandy coasts of different bed slopes and grain sizes under the various wave conditions was realized by using the CROSS-P and Xbeach morphodynamic models. A special criterion taking into account a total volume of bed deformations per one hour was suggested to determine the conditions of profile stabilization. For both models the time scales of equilibrium profile formation were found to be the same. However, the deformation magnitudes differed significantly. Bed deformations were computed on the whole profile length over the 200-hours duration of wave impact. It was concluded that both models predict a trend of the bed slope toward a stable value. CROSS-P model shows the widening of accumulative terrace during the profile evolution. The mean slope of the equilibrium profile was found to depend on the initial bed slope.


1997 ◽  
Vol 35 (2-3) ◽  
pp. 131-138 ◽  
Author(s):  
Pirjo-Riitta Rantala ◽  
Hannu Wirola

The aim of the study was to determine if solid, slightly soluble compounds can be used as nutrient source in activated sludge treatment plants instead of liquid phosphoric acid. Four different solid materials were tested in lab-scale solubility tests to find compounds which are least soluble. Two materials were chosen for further studies: apatite and raw phosphate. The use of apatite and raw phosphate as nutrient source was studied in lab-scale activated sludge reactors along with a control reactor where phosphorus was added in liquid form. The phosphorus dosage, measured as elementary phosphorus, was the same for all three reactors. The reactors were fed with pre-clarified chemi-thermomechanical pulp mill (CTMP) wastewater. There were no significant differences in the reductions of organic matter between the three reactors. The mean effluent concentration of total phosphorus was 3 mg P/l in the control reactor and less than 1 mg P/1 in the other two reactors. The soluble phosphorus concentration was more than 2 mg P/l in the control reactor and less than 0.5 mg P/l in the other two. Apatite was an even better nutrient source than raw phosphate. Further lab-scale tests were conducted using two different grain sizes of apatite. No significant differences were found between the studied grain sizes (&lt;0.074 mm and 0.074 mm-0.125 mm). Apatite was then used in full-scale at a CTMP-mill two different times. The experiments showed that the mean concentrations of phosphorus can be reduced radically by using apatite as a nutrient source instead of liquid phosphorus. Solid phosphorus compounds are a viable alternative to reduce the phosphorus load from forest industry wastewater treatment plants.


1991 ◽  
Vol 56 (10) ◽  
pp. 1993-2008
Author(s):  
S. Hanafi ◽  
G. M. S. El-Shafei ◽  
B. Abd El-Hamid

The hydration of tricalcium silicate (C3S) with three grain sizes of monoclinic (M) and triclinic (T) modifications and on their thermally activated samples were investigated by exposure to water vapour at 80°C for 60 days. The products were investigated by XRD, TG and N2 adsorption. The smaller the particle size the greater was the hydration for both dried and activated samples from (M). In the activated samples a hydrate with 2θ values of 38.4°, 44.6° and 48.6° could be identified. Hydration increased with particle size for the unactivated (T) samples but after activation the intermediate size exhibited enhanced hydration. Thermal treatment at 950°C of (T) samples increased the surface active centers on the expense of those in the bulk. Changes produced in surface texture upon activation and/or hydration are discussed.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3150
Author(s):  
Ignas Nevinskas ◽  
Zenius Mockus ◽  
Remigijus Juškėnas ◽  
Ričardas Norkus ◽  
Algirdas Selskis ◽  
...  

Electron dynamics in the polycrystalline bismuth films were investigated by measuring emitted terahertz (THz) radiation pulses after their photoexcitation by tunable wavelength femtosecond duration optical pulses. Bi films were grown on metallic Au, Pt, and Ag substrates by the electrodeposition method with the Triton X-100 electrolyte additive, which allowed us to obtain more uniform films with consistent grain sizes on any substrate. It was shown that THz pulses are generated due to the spatial separation of photoexcited electrons and holes diffusing from the illuminated surface at different rates. The THz photoconductivity spectra analysis has led to a conclusion that the thermalization of more mobile carriers (electrons) is dominated by the carrier–carrier scattering rather than by their interaction with the lattice.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3314
Author(s):  
Kweon-Hoon Choi ◽  
Bong-Hwan Kim ◽  
Da-Bin Lee ◽  
Seung-Yoon Yang ◽  
Nam-Seok Kim ◽  
...  

In this work, the microstructure and corrosion behavior of a novel Al-6Mg alloy were investigated. The alloy was prepared by casting from pure Al and Mg+Al2Ca master alloy. The ingots were homogenized at 420 °C for 8 h, hot-extruded and cold-rolled with 20% reduction (CR20 alloy) and 50% reduction (CR50 alloy). The CR50 alloy exhibited a higher value of intergranular misorientation due to a higher cold rolling reduction ratio. The average grain sizes were 19 ± 7 μm and 17 ± 9 μm for the CR20 and CR50 alloys, respectively. An intergranular corrosion (IGC) behavior was investigated after sensitization by a nitric acid mass-loss test (ASTM G67). The mass losses of both the CR20 and CR50 alloys were similar at early periods of sensitization, however, the CR20 alloy became more susceptible to IGC as the sensitization time increased. Grain size and β phase precipitation were two critical factors influencing the IGC behavior of this alloy system.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 98
Author(s):  
Leigh A. Provost ◽  
Robert Weaver ◽  
Nezamoddin N. Kachouie

The changing climate affects the agricultural lands, and, in turn, the changes in agricultural lands alter the watershed. A major concern regarding waterbodies is the increased sedimentation rates due to climate change. To improve the water quality, it is crucial to remove fine sediments. Using current environmental dredging methods is challenging because of the sediment volumes that must be dredged, the absence of nearby disposal sites, and the shoreline infrastructure at the dredging locations. To address these issues, we used a surgical dredging method with a variable area suction head that can easily maneuver around the docks, pilings, and other infrastructures. It can also isolate the fine grain material to better manage the dredged volumes in the seabed where nutrients are typically adhered. To this end, a statistical analysis of the dredged samples is essential to improve the design efficiency. In this work, we collected several samples using a variable area suction head with different design settings. The collected samples using each design setting were then used to model the distributions of the different grain sizes in the dredged sediments. The proposed statistical model can be effectively used for the prediction of sediment sampling outcomes to improve the gradation of the fine sediments.


2020 ◽  
Vol 500 (3) ◽  
pp. 2979-2985
Author(s):  
Xiaodong Liu ◽  
Jürgen Schmidt

ABSTRACT It is expected since the early 1970s that tenuous dust rings are formed by grains ejected from the Martian moons Phobos and Deimos by impacts of hypervelocity interplanetary projectiles. In this paper, we perform direct numerical integrations of a large number of dust particles originating from Phobos and Deimos. In the numerical simulations, the most relevant forces acting on the dust are included: Martian gravity with spherical harmonics up to fifth degree and fifth order, gravitational perturbations from the Sun, Phobos, and Deimos, solar radiation pressure, as well as the Poynting–Robertson drag. In order to obtain the ring configuration, simulation results of various grain sizes ranging from submicrometres to 100 μm are averaged over a specified initial mass distribution of ejecta. We find that for the Phobos ring grains smaller than about 2 μm are dominant; while the Deimos ring is dominated by dust in the size range of about 5–20 μm. The asymmetries, number densities, and geometric optical depths of the rings are quantified from simulations. The results are compared with the upper limits of the optical depth inferred from Hubble observations. We compare to previous work and discuss the uncertainties of the models.


Sign in / Sign up

Export Citation Format

Share Document