scholarly journals RADIOCHEMICAL ANALYSIS OF GROUND-WATER AND SURFACE-WATER SAMPLES COLLECTED AFTER THE SALMON EVENT IN THE VICINITY OF TATUM SALT DOME, LAMAR COUNTY, MISSISSIPPI.

1966 ◽  
Author(s):  
W.A. Beetem ◽  
D.B. Grove
2006 ◽  
Vol 6 (2) ◽  
pp. 47-53 ◽  
Author(s):  
D. Simazaki ◽  
M. Asami ◽  
T. Nishimura ◽  
S. Kunikane ◽  
T. Aizawa ◽  
...  

Nationwide surveys of 1,4-dioxane and methyl-t-butyl ether (MTBE) levels in raw water used for the drinking water supply were conducted at 91 water treatment plants in Japan in 2001 and 2002, prior to the revision of the drinking water quality standards. 1,4-dioxane was widely and continuously detected in raw water samples and its occurrence was more frequent and its concentrations higher in groundwater than in surface water. However, its maximum concentration in raw water was much lower than its new standard value (50 μg/L), which was determined as a level of 10−5 excessive cancer risk to humans. Trace levels of MTBE were also detected in several surface water samples.


Author(s):  
Kamran Bashir ◽  
Zhimin Luo ◽  
Guoning Chen ◽  
Hua Shu ◽  
Xia Cui ◽  
...  

Griseofulvin (GSF) is clinically employed to treat fungal infections in humans and animals. GSF was detected in surface waters as a pharmaceutical pollutant. GSF detection as an anthropogenic pollutant is considered as a possible source of drug resistance and risk factor in ecosystem. To address this concern, a new extraction and enrichment method was developed. GSF-surface molecularly imprinted polymers (GSF-SMIPs) were prepared and applied as solid phase extraction (SPE) sorbent. A dispersive solid phase extraction (DSPE) method was designed and combined with HPLC for the analysis of GSF in surface water samples. The performance of GSF-SMIPs was assessed for its potential to remove GSF from water samples. The factors affecting the removal efficiency such as sample pH and ionic strength were investigated and optimized. The DSPE conditions such as the amount of GSF-SMIPs, the extraction time, the type and volume of desorption solvents were also optimized. The established method is linear over the range of 0.1–100 µg/mL. The limits of detection and quantification were 0.01 and 0.03 µg/mL respectively. Good recoveries (91.6–98.8%) were achieved after DSPE. The intra-day and inter-day relative standard deviations were 0.8 and 4.3% respectively. The SMIPs demonstrated good removal efficiency (91.6%) as compared to powder activated carbon (67.7%). Moreover, the SMIPs can be reused 10 times for water samples. This is an additional advantage over single-use activated carbon and other commercial sorbents. This study provides a specific and sensitive method for the selective extraction and detection of GSF in surface water samples.


Chemosphere ◽  
2009 ◽  
Vol 77 (10) ◽  
pp. 1285-1291 ◽  
Author(s):  
Hing-Biu Lee ◽  
Thomas E. Peart ◽  
M. Lewina Svoboda ◽  
Sean Backus

2018 ◽  
Vol 319 (3) ◽  
pp. 907-916 ◽  
Author(s):  
Bhupender Singh ◽  
Krishan Kant ◽  
Maneesha Garg ◽  
Ajit Singh ◽  
B. K. Sahoo ◽  
...  

2015 ◽  
Vol 63 (1) ◽  
pp. 59-60 ◽  
Author(s):  
S Mandal ◽  
N Khuda ◽  
MR Mian ◽  
M Moniruzzaman ◽  
N Nahar ◽  
...  

Abstract not available DOI: http://dx.doi.org/10.3329/dujs.v63i1.21770 Dhaka Univ. J. Sci. 63(1): 59-60, 2015 (January)


Author(s):  
Aseem Saxena

Fluorine is the most electronegative and most reactive halogen. Fluorine is 13th most common element on earth crust found in the form of fluoride. Concentration of fluoride below 1 mg/l are believed beneficial in the prevention of dental carries or tooth decay, but above 1.5mg/l, it increases the severity of the deadly diseases fluorosis, which is incurable in India. The whole study was conducted in Gorakhpur region to know about the concentration of fluoride, mainly in rural areas of the district. We have collected 64 drinking water samples from 9 blocks of the district in which we took 6 number of ground water samples from each block so total 54 number of samples were collected from the groundwater source and 8 number of samples were taken from surface water source. Out of 54 ground water samples, 36 numbers of samples were taken from India Mark-II hand pumps and rest 18 number of samples were taken from shallow depth hand pumps and tested to determine the concentration of fluoride. From our assessment we came to know that in this region the concentration of fluoride in groundwater ranges between 0.004 to 1.42mg/l, minimum value is found in the surface water source and the maximum value is found from the ground water source.The samples collected from both ground water and as well as surface water were taken from potable sources i.e. they are used for drinking purposes in daily routine. After the testing and analyzing the samples it is come to know that surface water has quite lower levels fluoride compare to ground water. The conclusion of this work is to give information about the concentration of fluoride in groundwater and surface water of the district.


Sign in / Sign up

Export Citation Format

Share Document