scholarly journals Experiment data for determination of uncertainty of two-phase mass flow rate in a Semiscale Mod-3 system spool piece at Karlsruhe Kernforschungzentrum. [PWR]

1979 ◽  
Author(s):  
A. Stephens
2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Yoon Jo Kim ◽  
Yogendra K. Joshi ◽  
Andrei G. Fedorov ◽  
Young-Joon Lee ◽  
Sung-Kyu Lim

It is now widely recognized that the three-dimensional (3D) system integration is a key enabling technology to achieve the performance needs of future microprocessor integrated circuits (ICs). To provide modular thermal management in 3D-stacked ICs, the interlayer microfluidic cooling scheme is adopted and analyzed in this study focusing on a single cooling layer performance. The effects of cooling mode (single-phase versus phase-change) and stack/layer geometry on thermal management performance are quantitatively analyzed, and implications on the through-silicon-via scaling and electrical interconnect congestion are discussed. Also, the thermal and hydraulic performance of several two-phase refrigerants is discussed in comparison with single-phase cooling. The results show that the large internal pressure and the pumping pressure drop are significant limiting factors, along with significant mass flow rate maldistribution due to the presence of hot-spots. Nevertheless, two-phase cooling using R123 and R245ca refrigerants yields superior performance to single-phase cooling for the hot-spot fluxes approaching ∼300 W/cm2. In general, a hybrid cooling scheme with a dedicated approach to the hot-spot thermal management should greatly improve the two-phase cooling system performance and reliability by enabling a cooling-load-matched thermal design and by suppressing the mass flow rate maldistribution within the cooling layer.


2018 ◽  
Vol 8 (9) ◽  
pp. 1413 ◽  
Author(s):  
Dan Yao ◽  
Kwongi Lee ◽  
Minho Ha ◽  
Cheolung Cheong ◽  
Inhiug Lee

A new pump, called the hybrid airlift-jet pump, is developed by reinforcing the advantages and minimizing the demerits of airlift and jet pumps. First, a basic design of the hybrid airlift-jet pump is schematically presented. Subsequently, its performance characteristics are numerically investigated by varying the operating conditions of the airlift and jet parts in the hybrid pump. The compressible unsteady Reynolds-averaged Navier-Stokes equations, combined with the homogeneous mixture model for multiphase flow, are used as the governing equations for the two-phase flow in the hybrid pump. The pressure-based methods combined with the Pressure-Implicit with Splitting of Operators (PISO) algorithm are used as the computational fluid dynamics techniques. The validity of the present numerical methods is confirmed by comparing the predicted mass flow rate with the measured ones. In total, 18 simulation cases that are designed to represent the various operating conditions of the hybrid pump are investigated: eight of these cases belong to the operating conditions of only the jet part with different air and water inlet boundary conditions, and the remaining ten cases belong to the operating conditions of both the airlift and jet parts with different air and water inlet boundary conditions. The mass flow rate and the efficiency are compared for each case. For further investigation into the detailed flow characteristics, the pressure and velocity distributions of the mixture in a primary pipe are compared. Furthermore, a periodic fluctuation of the water flow in the mass flow rate is found and analyzed. Our results show that the performance of the jet or airlift pump can be enhanced by combining the operating principles of two pumps into the hybrid airlift-jet pump, newly proposed in the present study.


Author(s):  
Nan Liang ◽  
Changqing Tian ◽  
Shuangquan Shao

As one kind of fluid machinery related to the two-phase flow, the refrigeration system encounters more problems of instability. It is essential to ensure the stability of the refrigeration systems for the operation and efficiency. This paper presents the experimental investigation on the static and dynamic instability in an evaporator of refrigeration system. The static instability experiments showed that the oscillatory period and swing of the mixture-vapor transition point by observation with a camera through the transparent quartz glass tube at the outlet of the evaporator. The pressure drop versus mass flow rate curves of refrigerant two phase flow in the evaporator were obtained with a negative slope region in addition to two positive slope regions, thus making the flow rate a multi-valued function of the pressure drop. For dynamic instabilities in the evaporation process, three types of oscillations (density wave type, pressure drop type and thermal type) were observed at different mass flow rates and heat fluxes, which can be represented in the pressure drop versus mass flow rate curves. For the dynamic instabilities, density wave oscillations happen when the heat flux is high with the constant mass flow rate. Thermal oscillations happen when the heat flux is correspondingly low with constant mass flow rate. Though the refrigeration system do not have special tank, the accumulator and receiver provide enough compressible volume to induce the pressure drop oscillations. The representation and characteristic of each oscillation type were also analyzed in the paper.


2019 ◽  
Vol 826 ◽  
pp. 117-124
Author(s):  
Yurii Baidak ◽  
Iryna Vereitina

The paper relates to the field of measuring technologies and deals with the enhancement of thermoconvective method when it is applied for the experimental determination of such hydrodynamics indicators as mass flow rate and velocity of flow by their indirect parameters - capacity of the heater and the temperatures obtained from two thermal sensors, provided that they are located on the hermetic piping system surface. The issue of determination of correction factor on heterogeneity of liquid temperature distribution in the pipe cross section depending on pipe diameter and fluid movement velocity was clarified. According to the results of numerical calculations, the dependencies of temperature gradient on the pipe surface and the correction factor on the heterogeneity of the temperature distribution along the pipe cross-section under the heater in the function of the velocity of flow in pipes of different diameters are plotted. These dependencies specify the thermal method of studying the fluid flow in the pipes, simplify the experiment conduction, are useful in processing of the obtained results and can be applied in measuring engineering.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4182
Author(s):  
Emil Sasimowski ◽  
Łukasz Majewski ◽  
Marta Grochowicz

The study investigates the effect of the content and size of wheat bran grains on selected properties of a lignocellulosic biocomposite on a polyethylene matrix. The biocomposite samples were made by injection method of low-density polyethylene with 5%, 10% and 15% by weight of wheat bran. Three bran fractions with grain sizes <0.4 mm, 0.4–0.6 mm and 0.6–0.8 mm were used. The properties of the mouldings (after primary shrinkage) were examined after their 2.5-year natural aging period. Processing properties, such as MFR (mass flow rate) and processing shrinkage, were determined. Selected physical, mechanical and structural properties of the produced biocomposite samples were tested. The results allowed the determination of the influence of both the content of bran and the size of its grains on such properties of the biocomposite as: color, gloss, processing shrinkage, tensile strength, MFR mass flow rate, chemical structure (FTIR), thermal properties (DSC, TG), p-v-T relationship. The tests did not show any deterioration of the mechanical characteristics of the tested composites after natural aging.


Author(s):  
Jiarui Zhang ◽  
Zhixun Xia ◽  
Liya Huang ◽  
Likun Ma

To predict engine performance and further instruct the integral engine design, a more reasonable and accurate numerical model of the two-phase underwater ramjet was introduced in this article by considering the bubble formation process. Two-fluid model was used to examine the bubbly flow in the nozzle and its mathematical model was solved by a fourth-order Runge–Kutta method. Subsequently, the influences of vessel velocity, gas mass flow rate, navigational depth, and orifice diameter of the bubble injector on the performance of the engine were discussed. Results show that, compared with convergent nozzle, Laval nozzle is proved to improve the thrust of the engine, especially at relatively high velocity and gas mass flow rate. With the other conditions fixed, there is an optimum vessel velocity for the ramjet, in which maximum thrust is generated. And a smaller orifice diameter always promotes the engine performance, while this promotion is negligible when the orifice diameter is smaller than 1 mm. Besides, increasing backpressure will cause serious performance drop, which means that the the two-phase underwater ramjet is only efficient for shallow depths.


Sign in / Sign up

Export Citation Format

Share Document