The Application of a Recombinant Antimicrobial Peptide of Thrombocidin-1 expressed in Pichia pastoris as a Novel Approach Against Some Oral Pathogenic Bacteria: An In-vitro Study

2021 ◽  
Vol 28 ◽  
Author(s):  
Fatemeh Forouzanfar ◽  
Hamideh Sadat Mohammadipour ◽  
Majid Akbari ◽  
Reza Beyraghshamshir ◽  
Abbas Tanhaeian ◽  
...  

Objective: Oral infections and dental caries are considered serious health problems. Therefore, searching for new agents with antimicrobial properties seems to be crucial. This study aimed to evaluate the antimicrobial activity of the recombinant Thrombocidin-1 [TC-1] peptide on some oral pathogens. Also, the cytotoxicity of this peptide on human gingival fibroblast cells was investigated. Methods & Materials: In this study, Pichia pastoris was used for the expression of recombinant TC-1. The microbroth dilution method was used to determine the minimum inhibitory concentration [MIC] and minimum bacterial concentration [MBC]. It tested against four main oral pathogens; Streptococcus mutans, Streptococcus salivarius, Streptococcus oralis, and Enterococcus faecalis. Moreover, the cytotoxicity analysis was done on gingival fibroblast cells by the MTT method. The data were analyzed using a two-way analysis of variance [ANOVA] and Tukey’s HSD tests. Results: The most bactericidal effect of TC-1 was against S. salivarius, the highest bacteriostatic effect was against S. salivarius, and S. oralis had the lowest MIC value of 1.512 μg/ml. The Thrombocidin-1 peptide showed lower antibacterial properties against E. faecalis compared with CHX, unlike the stronger antimicrobial effect on examined streptococci. According to cytotoxicity examination, no concentration of TC-1 presented over 50% growth inhibition [IC50] of the fibroblasts cells. Conclusion: Based on antimicrobial tests and cytotoxicity results, the Thrombocidin-1 peptide may be useful as a safe antibacterial agent against some oral pathogens in dental materials.

Author(s):  
Hamideh Sadat Mohammadipour ◽  
Majid Akbari ◽  
Abbas Tanhaeian ◽  
Solmaz Pourgonabadi ◽  
Salehe Sekandari ◽  
...  

Objectives:: The present study was conducted to evaluate the antimicrobial effects of the recombinant chimer present in the lactoferrampin-lactoferricin [LFA-LFC] derived from the camel milk on some oral bacteria responsible for dental caries and endodontic failures. Methods and Materials:: The antimicrobial activity was assessed on the Streptococcus mutans [ATCC 35668], Streptococcus salivarius [ATCC 9222], Streptococcus oralis [ATCC 35037], and Enterococcus faecalis [ATCC 29212], using the microbroth dilution method. The cytotoxicity analysis was done through the MTT method on the human gingival fibroblasts. The data were reported using the descriptive methods, and were analyzed by the one-way analysis of variance (ANOVA) and Tukey’s honestly significant difference (HSD) test. Results:: Results showed that the chimeric peptide had the highest bacteriostatic effect on S. salivarius with the lowest minimum inhibitory concentration value of 1.22 μg/Ml. Also, LFA-LFC chimer was more effective against S. mutans and S. salivarius compared to using 0.2% chlorhexidine mouthwash. The minimum bactericidal concentration analysis showed the most bactericidal effect against S. mutans [1.256 μg/mL]. In spite of greater antibacterial effect on the evaluated streptococci, this peptide showed the lower bacteriostatic and bactericidal properties against E. faecalis compared to the chlorhexidine. Based on cytotoxicity assay, over 50% of the cells were viable in all the evaluation times demonstrating the biocompatibility of the peptide. Conclusion:: The LFA-LFC chimer revealed comparable or even more effective antibacterial properties compared to the chlorhexidine against the caries-inducing bacteria with no toxicity on the human gingival fibroblast cells. So, this peptide can be used as a safe alternative to the chlorhexidine and other chemicals in the dental applications for prevention and management of the dental caries.


Author(s):  
Cláudio Rodrigues Rezende Costa ◽  
Bruna Rabelo Amorim ◽  
Sandra Márcia Mazutti da Silva ◽  
Ana Carolina Acevedo ◽  
Pérola de Oliveira Magalhães ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Nagat Areid ◽  
Eva Söderling ◽  
Johanna Tanner ◽  
Ilkka Kangasniemi ◽  
Timo O. Närhi

Purpose. To explore earlyS. mutansbiofilm formation on hydrothermally induced nanoporous TiO2surfacesin vivoand to examine the effect of UV light activation on the biofilm development.Materials and Methods. Ti-6Al-4V titanium alloy discs (n = 40) were divided into four groups with different surface treatments: noncoated titanium alloy (NC); UV treated noncoated titanium alloy (UVNC); hydrothermally induced TiO2coating (HT); and UV treated titanium alloy with hydrothermally induced TiO2coating (UVHT).In vivoplaque formation was studied in 10 healthy, nonsmoking adult volunteers. Titanium discs were randomly distributed among the maxillary first and second molars. UV treatment was administered for 60 min immediately before attaching the discs in subjects’ molars. Plaque samples were collected 24h after the attachment of the specimens. Mutans streptococci (MS), non-mutans streptococci, and total facultative bacteria were cultured, and colonies were counted.Results. The plaque samples of NC (NC + UVNC) surfaces showed over 2 times more oftenS. mutanswhen compared to TiO2surfaces (HT + UVHT), with the number of colonized surfaces equal to 7 and 3, respectively.Conclusion. Thisin vivostudy suggested that HT TiO2surfaces, which we earlier showed to improve blood coagulation and encourage human gingival fibroblast attachmentin vitro, do not enhance salivary microbial (mostly mutans streptococci) adhesion and initial biofilm formation when compared with noncoated titanium alloy. UV light treatment provided Ti-6Al-4V surfaces with antibacterial properties and showed a trend towards less biofilm formation when compared with non-UV treated titanium surfaces.


2012 ◽  
Vol 44 (5) ◽  
pp. 325-331 ◽  
Author(s):  
Elizabeth F. Martinez ◽  
Tatiani A.G. Donato ◽  
Victor E. Arana-Chavez

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4741
Author(s):  
Jamie Toole ◽  
Hannah L. Bolt ◽  
John J. Marley ◽  
Sheila Patrick ◽  
Steven L. Cobb ◽  
...  

Peptoids (oligo N-substituted glycines) are peptide analogues, which can be designed to mimic host antimicrobial peptides, with the advantage that they are resistant to proteolytic degradation. Few studies on the antimicrobial efficacy of peptoids have focused on Gram negative anaerobic microbes associated with clinical infections, which are commonly recalcitrant to antibiotic treatment. We therefore studied the cytotoxicity and antibiofilm activity of a family of peptoids against the Gram negative obligate anaerobe Fusobacterium nucleatum, which is associated with infections in the oral cavity. Two peptoids, peptoid 4 (NaeNpheNphe)4 and peptoid 9 (NahNspeNspe)3 were shown to be efficacious against F. nucleatum biofilms at a concentration of 1 μM. At this concentration, peptoids 4 and 9 were not cytotoxic to human erythrocytes or primary human gingival fibroblast cells. Peptoids 4 and 9 therefore have merit as future therapeutics for the treatment of oral infections.


Sign in / Sign up

Export Citation Format

Share Document