Phenylboronic Acid-polymers for Biomedical Applications

2019 ◽  
Vol 26 (37) ◽  
pp. 6797-6816 ◽  
Author(s):  
Ji Hyun Ryu ◽  
Gyeong Jin Lee ◽  
Yu-Ru V. Shih ◽  
Tae-il Kim ◽  
Shyni Varghese

Background: Phenylboronic acid-polymers (PBA-polymers) have attracted tremendous attention as potential stimuli-responsive materials with applications in drug-delivery depots, scaffolds for tissue engineering, HIV barriers, and biomolecule-detecting/sensing platforms. The unique aspect of PBA-polymers is their interactions with diols, which result in reversible, covalent bond formation. This very nature of reversible bonding between boronic acids and diols has been fundamental to their applications in the biomedical area. Methods: We have searched peer-reviewed articles including reviews from Scopus, PubMed, and Google Scholar with a focus on the 1) chemistry of PBA, 2) synthesis of PBA-polymers, and 3) their biomedical applications. Results: We have summarized approximately 179 papers in this review. Most of the applications described in this review are focused on the unique ability of PBA molecules to interact with diol molecules and the dynamic nature of the resulting boronate esters. The strong sensitivity of boronate ester groups towards the surrounding pH also makes these molecules stimuli-responsive. In addition, we also discuss how the re-arrangement of the dynamic boronate ester bonds renders PBA-based materials with other unique features such as self-healing and shear thinning. Conclusion: The presence of PBA in the polymer chain can render it with diverse functions/ relativities without changing their intrinsic properties. In this review, we discuss the development of PBA polymers with diverse functions and their biomedical applications with a specific focus on the dynamic nature of boronate ester groups.

Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3050
Author(s):  
Yujie Chen ◽  
Runjing Zhang ◽  
Baiqin Zheng ◽  
Chao Cai ◽  
Zhen Chen ◽  
...  

Injectable hydrogels have attracted growing interests as promising biomaterials for clinical applications, due to their minimum invasive implanting approach and easy-handling performance. Nevertheless, natural biomaterials-based injectable hydrogels with desirable nontoxicity are suffering from limited functions, failing to fulfill the requirements of clinical biomaterials. The development of novel injectable biomaterials with a combination of biocompatibility and adequate functional properties is a growing urgency toward biomedical applications. In this contribution, we report a simple and effective approach to fabricate multi-functional CMC-OSA-DTP hydrogels. Two kinds of natural polysaccharide derived polymers, carboxymethyl chitosan (CMC) and oxidized alginate (OSA) along with 3,3′-dithiopropionic acid dihydrazide (DTP) were utilized to introduce three dynamic covalent bonds. Owing to the existence of triple dynamic bonds, this unique CMC-OSA-DTP hydrogel possessed smart redox and pH stimuli-responsive property, injectability as well as self-healing ability. In addition, the CCK-8 and live/dead assays demonstrated satisfying cytocompatibility of the CMC-OSA-DTP hydrogel in vitro. Based on its attractive properties, this easy-fabricated and multi-functional hydrogel demonstrated the great potential as an injectable biomaterial in a variety of biomedical applications.


2013 ◽  
Vol 23 (36) ◽  
pp. 4390-4390 ◽  
Author(s):  
Hidenori Kuroki ◽  
Ihor Tokarev ◽  
Dmytro Nykypanchuk ◽  
Ekaterina Zhulina ◽  
Sergiy Minko

2018 ◽  
Vol 9 (1) ◽  
pp. 11-19 ◽  
Author(s):  
J. I. Park ◽  
A. Choe ◽  
M. P. Kim ◽  
H. Ko ◽  
T. H. Lee ◽  
...  

A crosslinked copolymer having a reversible covalent bond between a bulky amine and an isocyanate presents reshapable, repeatable, and water-adaptive self-healing properties.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 801
Author(s):  
Zhentao Hao ◽  
Weihua Li

The nepenthes-inspired lubricant-infused surface (LIS) is emerging as a novel repellent surface with self-healing, self-cleaning, pressure stability and ultra-slippery properties. Recently, stimuli-responsive materials to construct a smart LIS have broadened the application of LIS for droplet manipulation, showing great promise in microfluidics. This review mainly focuses on the recent developments towards the droplet manipulation on LIS with different mechanisms induced by various external stimuli, including thermo, light, electric, magnetism, and mechanical force. First, the droplet condition on LIS, determined by the properties of the droplet, the lubricant and substrate, is illustrated. Droplet manipulation via altering the droplet regime realized by different mechanisms, such as varying slipperiness, electrostatic force and wettability, is discussed. Moreover, some applications on droplet manipulation employed in various filed, including microreactors, microfluidics, etc., are also presented. Finally, a summary of this work and possible future research directions for the transport of droplets on smart LIS are outlined to promote the development of this field.


2020 ◽  
Vol 10 (24) ◽  
pp. 9143
Author(s):  
Pedro Morouço ◽  
Bahareh Azimi ◽  
Mario Milazzo ◽  
Fatemeh Mokhtari ◽  
Cristiana Fernandes ◽  
...  

The applications of tissue engineered constructs have witnessed great advances in the last few years, as advanced fabrication techniques have enabled promising approaches to develop structures and devices for biomedical uses. (Bio-)printing, including both plain material and cell/material printing, offers remarkable advantages and versatility to produce multilateral and cell-laden tissue constructs; however, it has often revealed to be insufficient to fulfill clinical needs. Indeed, three-dimensional (3D) (bio-)printing does not provide one critical element, fundamental to mimic native live tissues, i.e., the ability to change shape/properties with time to respond to microenvironmental stimuli in a personalized manner. This capability is in charge of the so-called “smart materials”; thus, 3D (bio-)printing these biomaterials is a possible way to reach four-dimensional (4D) (bio-)printing. We present a comprehensive review on stimuli-responsive materials to produce scaffolds and constructs via additive manufacturing techniques, aiming to obtain constructs that closely mimic the dynamics of native tissues. Our work deploys the advantages and drawbacks of the mechanisms used to produce stimuli-responsive constructs, using a classification based on the target stimulus: humidity, temperature, electricity, magnetism, light, pH, among others. A deep understanding of biomaterial properties, the scaffolding technologies, and the implant site microenvironment would help the design of innovative devices suitable and valuable for many biomedical applications.


2022 ◽  
pp. 52144
Author(s):  
Jingyu Ren ◽  
Xiangbin Dong ◽  
Yanjie Duan ◽  
Lin Lin ◽  
Xiaowei Xu ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 838
Author(s):  
Stefan Götz ◽  
Stefan Zechel ◽  
Martin D. Hager ◽  
Ulrich S. Schubert

Metallopolymers represent an interesting combination of inorganic metal complexes and polymers resulting in a variety of outstanding properties and applications. One field of interest are stimuli-responsive materials and, in particular, self-healing polymers. These systems could be achieved by the incorporation of terpyridine–lanthanoid complexes of Eu (III), Tb (III), and Dy (III) in the side chains of well-defined copolymers, which were prepared applying the reversible addition fragmentation chain-transfer (RAFT)-polymerization technique. The metal complexes crosslink the polymer chains in order to form reversible supramolecular networks. These dynamics enable the self-healing behavior. The information on composition, reversibility, and stability of the complexes was obtained by isothermal titration calorimetry (ITC). Moreover, self-healing experiments were performed by using 3D-microscopy and indentation.


Sign in / Sign up

Export Citation Format

Share Document