Osteoporosis Entwined with Cardiovascular Disease: The Implication of Osteoprotegerin and Example of Statins

2020 ◽  
Vol 27 ◽  
Author(s):  
Maria V. Deligiorgi ◽  
Mihalis I. Panayiotidis ◽  
Gerasimos Siasos ◽  
Dimitrios T. Trafalis

: Beyond being epiphenomenon of shared epidemiological factors, the integration of osteoporosis (OP) with cardiovascular disease (CVD)− termed "calcification paradox"− reflects a continuum of aberrant cardiometabolic status. The present review provides background knowledge on "calcification paradox", focusing on the endocrine aspect of vasculature orchestrated by the osteoblastic molecular fingerprint of vascular cells, acquired via imbalance among established modulators of mineralization. Osteoprotegerin (OPG)–the well-established osteoprotective cytokine−has recently been shown to exert a vessel-modifying role. Prompted by this notion, the present review interrogates OPG as the potential missing link between OP and CVD. However, so far, the confirmation of this hypothesis is hindered by the equivocal role of OPG in CVD, being both proatherosclerotic and antiatherosclerotic. Further research is needed to illuminate whether OPG could be biomarker of the "calcification paradox". Moreover, the present review brings into prominence the dual role of statins−cardioprotective and osteoprotective− as potential illustration of the integration of CVD with OP. Considering that the statins-induced modulation of OPG is central to the statins-driven osteoprotective signalling, statins could be suggested as illustration of the role of OPG in the bone/vessels crosstalk, if further studies consolidate the contribution of OPG to the cardioprotective role of statins. Another outstanding issue that merits further evaluation is the inconsistency of the osteoprotective role of statins. Further understanding of the varying bone-modifying role of statins, likely attributed to the unique profile of different classes of statins defined by distinct physicochemical characteristics, may yield tangible benefits for treating simultaneously OP and CVD.

2020 ◽  
Vol 21 (14) ◽  
pp. 4822
Author(s):  
Arvand Asghari ◽  
Michihisa Umetani

Obesity is currently affecting more than 40% of the Americans, and if it progresses with this rate, soon one out of two Americans will be obese. Obesity is an important risk factor for several disorders including cardiovascular disease, the first cause of death in the United States. Cancer follows as the second deadliest disease, and a link between obesity and cancer has been suggested. However, it is very hard to establish an exact connection between obesity and cancers due to the multifactorial nature of obesity. Hypercholesterolemia is a comorbidity of obesity and also linked to several cancers. Recently a cholesterol metabolite 27-hydroxycholesterol (27HC) was found to be an endogenous selective estrogen receptor modulator (SERM), which opened new doors toward several interesting studies on the role of this molecule in biological disorders. It is speculated that 27HC might be the missing link in the obesity and cancer chain. Here, we explored the effects of 27-hydroxycholesterol on obesity and cancers with a focus on the SERM capacity of 27HC.


2013 ◽  
Vol 126 (3) ◽  
pp. 183-194 ◽  
Author(s):  
Kasey C. Vickers ◽  
Kerry-Anne Rye ◽  
Fatiha Tabet

Physiological and pathological roles for small non-encoding miRNAs (microRNAs) in the cardiovascular system have recently emerged and are now widely studied. The discovery of widespread functions of miRNAs has increased the complexity of gene-regulatory processes and networks in both the cardiovascular system and cardiovascular diseases. Indeed, it has recently been shown that miRNAs are implicated in the regulation of many of the steps leading to the development of cardiovascular disease. These findings represent novel aspects in miRNA biology and, therefore, our understanding of the role of these miRNAs during the pathogenesis of cardiovascular disease is critical for the development of novel therapies and diagnostic interventions. The present review will focus on understanding how miRNAs are involved in the onset and development of cardiovascular diseases.


2014 ◽  
Vol 462 (3) ◽  
pp. 385-395 ◽  
Author(s):  
Alena Shmakova ◽  
Michael Batie ◽  
Jimena Druker ◽  
Sonia Rocha

Responding appropriately to changes in oxygen availability is essential for multicellular organism survival. Molecularly, cells have evolved intricate gene expression programmes to handle this stressful condition. Although it is appreciated that gene expression is co-ordinated by changes in transcription and translation in hypoxia, much less is known about how chromatin changes allow for transcription to take place. The missing link between co-ordinating chromatin structure and the hypoxia-induced transcriptional programme could be in the form of a class of dioxygenases called JmjC (Jumonji C) enzymes, the majority of which are histone demethylases. In the present review, we will focus on the function of JmjC histone demethylases, and how these could act as oxygen sensors for chromatin in hypoxia. The current knowledge concerning the role of JmjC histone demethylases in the process of organism development and human disease will also be reviewed.


2014 ◽  
Vol 122 (03) ◽  
Author(s):  
A Chatzigeorgiou ◽  
R Garcia-Martin ◽  
KJ Chung ◽  
I Alexaki ◽  
A Klotzsche-von Ameln ◽  
...  

1997 ◽  
Vol 77 (03) ◽  
pp. 577-584 ◽  
Author(s):  
Mehrdad Baghestanian ◽  
Roland Hofbauer ◽  
Hans G Kress ◽  
Johann Wojta ◽  
Astrid Fabry ◽  
...  

SummaryRecent data suggest that auricular thrombosis is associated with accumulation of mast cells (MC) in the upper endocardium (where usually no MC reside) and local expression of MGF (mast cell growth factor) (25). In this study, the role of vascular cells, thrombin-activation and MGF, in MC-migration was analyzed. For this purpose, cultured human auricular endocardial cells (HAUEC), umbilical vein endothelial cells (HUVEC) and uterine-(HUTMEC) and skin-derived (HSMEC) microvascular endothelial cells were exposed to thrombin or control medium, and the migration of primary tissue MC (lung, n = 6) and HMC-1 cells (human MC-line) against vascular cells (supernatants) measured. Supernatants (24 h) of unstimulated vascular cells (monolayers of endocardium or endothelium) as well as recombinant (rh) MGF induced a significant migratory response in HMC-1 (control: 3025 ± 344 cells [100 ± 11.4%] vs. MGF, 100 ng/ml: 8806 ± 1019 [291 ± 34%] vs. HAUEC: 9703 ± 1506 [320.8 ± 49.8%] vs. HUTMEC: 8950 ± 1857 [295.9 ± 61.4%] vs. HSMEC: 9965 ± 2018 [329.4 ± 66.7%] vs. HUVEC: 9487 ± 1402 [313.6 ± 46.4%], p <0.05) as well as in primary lung MC. Thrombin-activation (5 U/ml, 12 h) of vascular cells led to an augmentation of the directed migration of MC as well as to a hirudin-sensitive increase in MGF synthesis and release. Moreover, a blocking anti-MGF antibody was found to inhibit MC-migration induced by unstimulated or thrombin-activated vascular cells. Together, these data show that endocardial and other vascular cells can induce migration of human MC. This MC-chemotactic signal of the vasculature is associated with expression and release of MGF, augmentable by thrombin, and may play a role in the pathophysiology of (auricular) thrombosis.


Sign in / Sign up

Export Citation Format

Share Document