scholarly journals Role of Atypical Chemokines and Chemokine Receptors Pathways In the Pathogenesis of Copd

Author(s):  
Francesco Nucera ◽  
Federica Lo Bello ◽  
Sj S. Shen ◽  
Paolo Ruggeri ◽  
Irene Coppolino ◽  
...  

: Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung resulting generally from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors [such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end product (RAGE) or toll-like receptors (TLRs)] in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in pre-clinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes, be-cause there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential anti-inflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of a typical chemokines in COPD pathophysiology and thereby improve COPD management.

2018 ◽  
Vol 132 (15) ◽  
pp. 1711-1723 ◽  
Author(s):  
Kris Genelyn Dimasuay ◽  
Amelia Sanchez ◽  
Niccolette Schaefer ◽  
Jorge Polanco ◽  
Deborah A. Ferrington ◽  
...  

Rhinovirus (RV) infection is involved in acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). RV primarily infects upper and lower airway epithelium. Immunoproteasomes (IP) are proteolytic machineries with multiple functions including the regulation of MHC class I antigen processing during viral infection. However, the role of IP in RV infection has not been explored. We sought to investigate the expression and function of IP during airway RV infection. Primary human tracheobronchial epithelial (HTBE) cells were cultured at air–liquid interface (ALI) and treated with RV16, RV1B, or interferon (IFN)-λ in the absence or presence of an IP inhibitor (ONX-0914). IP gene (i.e. LMP2) deficient mouse tracheal epithelial cells (mTECs) were cultured for the mechanistic studies. LMP2-deficient mouse model was used to define the in vivo role of IP in RV infection. IP subunits LMP2 and LMP7, antiviral genes MX1 and OAS1 and viral load were measured. Both RV16 and RV1B significantly increased the expression of LMP2 and LMP7 mRNA and proteins, and IFN-λ mRNA in HTBE cells. ONX-0914 down-regulated MX1 and OAS1, and increased RV16 load in HTBE cells. LMP2-deficient mTECs showed a significant increase in RV1B load compared with the wild-type (WT) cells. LMP2-deficient (compared with WT) mice increased viral load and neutrophils in bronchoalveolar lavage (BAL) fluid after 24 h of RV1B infection. Mechanistically, IFN-λ induction by RV infection contributed to LMP2 and LMP7 up-regulation in HTBE cells. Our data suggest that IP are induced during airway RV infection, which in turn may serve as an antiviral and anti-inflammatory mechanism.


2018 ◽  
Vol 399 (3) ◽  
pp. 219-234 ◽  
Author(s):  
Lindsay R. Stolzenburg ◽  
Ann Harris

AbstractChronic respiratory diseases encompass a group of diverse conditions affecting the airways, which all impair lung function over time. They include cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and asthma, which together affect hundreds of millions of people worldwide. MicroRNAs (miRNAs), a class of small non-coding RNAs involved in post-transcriptional gene repression, are now recognized as major regulators in the development and progression of chronic lung disease. Alterations in miRNA abundance occur in lung tissue, inflammatory cells, and freely circulating in blood and are thought to function both as drivers and modifiers of disease. Their importance in lung pathology has prompted the development of miRNA-based therapies and biomarker tools. Here, we review the current literature on miRNA expression and function in chronic respiratory disease and highlight further research that is needed to propel miRNA treatments for lung disorders towards the clinic.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hernán F. Peñaloza ◽  
Rick van der Geest ◽  
Joel A. Ybe ◽  
Theodore J. Standiford ◽  
Janet S. Lee

The IL-36 family of cytokines were identified in the early 2000’s as a new subfamily of the IL-1 cytokine family, and since then, the role of IL-36 cytokines during various inflammatory processes has been characterized. While most of the research has focused on the role of these cytokines in autoimmune skin diseases such as psoriasis and dermatitis, recent studies have also shown the importance of IL-36 cytokines in the lung inflammatory response during infectious and non-infectious diseases. In this review, we discuss the biology of IL-36 cytokines in terms of how they are produced and activated, as well as their effects on myeloid and lymphoid cells during inflammation. We also discuss the role of these cytokines during lung infectious diseases caused by bacteria and influenza virus, as well as other inflammatory conditions in the lungs such as allergic asthma, lung fibrosis, chronic obstructive pulmonary disease, cystic fibrosis and cancer. Finally, we discuss the current therapeutic advances that target the IL-36 pathway and the possibility to extend these tools to treat lung inflammatory diseases.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 222
Author(s):  
Katarzyna Piszczatowska ◽  
Katarzyna Czerwaty ◽  
Anna M. Cyran ◽  
Mathias Fiedler ◽  
Nils Ludwig ◽  
...  

Extracellular vesicles (EVs) are produced and released by all cells and are present in all body fluids. They exist in a variety of sizes, however, small extracellular vesicles (sEVs), the EV subset with a size range from 30 to 150 nm, are of current interest. By transporting a complex cargo that includes genetic material, proteins, lipids, and signaling molecules, sEVs can alter the state of recipient cells. The role of sEVs in mediating inflammatory processes and responses of the immune system is well-documented, and adds another layer of complexity to our understanding of frequent diseases, including chronic rhinosinusitis (CRS), asthma, chronic obstructive pulmonary disease (COPD), and upper airway infections. In these diseases, two aspects of sEV biology are of particular interest: (1) sEVs might be involved in the etiopathogenesis of inflammatory airway diseases, and might emerge as attractive therapeutic targets, and (2) sEVs might be of diagnostic or prognostic relevance. The purpose of this review is to outline the biological functions of sEVs and their capacity to both augment and attenuate inflammation and immune response in the context of pathogen invasion, CRS, asthma, and COPD.


2010 ◽  
Vol 151 (51) ◽  
pp. 2083-2088 ◽  
Author(s):  
Balázs Antus

A kilégzett levegőben mérhető nitrogén-monoxid a legszélesebb körben vizsgált légúti biomarker. A stabil állapotú krónikus obstruktív tüdőbetegségben a kilégzett nitrogén-monoxid-szint hasonló vagy csak kismértékben emelkedett az egészségesekhez képest. Mivel a nitrogén-monoxid-szint szoros összefüggést mutat a légúti eosinophilia mértékével, és mivel az eosinophil típusú légúti gyulladás szteroidokra érzékenyebb, az emelkedett nitrogén-monoxid-szinttel rendelkező betegek jobb válaszkészséget mutatnak az inhalációs vagy szisztémás kortikoszteroidkezelésre. A krónikus obstruktív tüdőbetegség akut exacerbatiója során a kilégzett nitrogén-monoxid szintje megemelkedik, majd ennek kezelése után csökken. Mivel a nitrogén-monoxid-szint és a kezelés során elért légzésfunkciós javulás szoros korrelációt mutat egymással, a nitrogén-monoxid-méréssel a terápiás válasz megjósolható. Összefoglalva: a nitrogén-monoxid-méréssel a krónikus obstruktív tüdőbetegségben szenvedő betegek olyan alcsoportját lehet elkülöníteni, amelynek szteroidérzékenysége nagyobb. Orv. Hetil., 2010, 151, 2083–2088.


2020 ◽  
Vol 28 (3) ◽  
pp. 360-370
Author(s):  
Stanislav N. Kotlyarov ◽  
Anna A. Kotlyarova

Despite all achievements of the modern medicine, the problem of chronic obstructive pulmonary disease (COPD) does not lose its relevance. The current paradigm suggests a key role of macrophages in inflammation in COPD. Macrophages are known to be heterogeneous in their functions. This heterogeneity is determined by their immunometabolic profile and also by peculiarities of lipid homeostasis of cells. Aim. To analyze the role of the ABCA1 transporter, a member of the ABC A subfamily, in the pathogenesis of COPD. The expression of ABCA1 in lung tissues is on the second place after the liver, which shows the important role of the carrier and of lipid homeostasis in the function of lungs. Analysis of the literature shows that participation of the transporter in inflammation consists in regulation of the content of cholesterol in the lipid rafts of the membranes, in phagocytosis and apoptosis. Conclusion. Through regulation of the process of reverse transport of cholesterol in macrophages of lungs, ABCA1 can change their inflammatory response, which makes a significant contribution to the pathogenesis of COPD.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3314
Author(s):  
Tomasz Kowalczyk ◽  
Joanna Kisluk ◽  
Karolina Pietrowska ◽  
Joanna Godzien ◽  
Miroslaw Kozlowski ◽  
...  

Identification of the NSCLC subtype at an early stage is still quite sophisticated. Metabolomics analysis of tissue and plasma of NSCLC patients may indicate new, and yet unknown, metabolic pathways active in the NSCLC. Our research characterized the metabolomics profile of tissue and plasma of patients with early and advanced NSCLC stage. Samples were subjected to thorough metabolomics analyses using liquid chromatography-mass spectrometry (LC-MS) technique. Tissue and/or plasma samples from 137 NSCLC patients were analyzed. Based on the early stage tissue analysis, more than 200 metabolites differentiating adenocarcinoma (ADC) and squamous cell lung carcinoma (SCC) subtypes as well as normal tissue, were identified. Most of the identified metabolites were amino acids, fatty acids, carnitines, lysoglycerophospholipids, sphingomyelins, plasmalogens and glycerophospholipids. Moreover, metabolites related to N-acyl ethanolamine (NAE) biosynthesis, namely glycerophospho (N-acyl) ethanolamines (GP-NAE), which discriminated early-stage SCC from ADC, have also been identified. On the other hand, the analysis of plasma of chronic obstructive pulmonary disease (COPD) and NSCLC patients allowed exclusion of the metabolites related to the inflammatory state in lungs and the identification of compounds (lysoglycerophospholipids, glycerophospholipids and sphingomyelins) truly characteristic to cancer. Our results, among already known, showed novel, thus far not described, metabolites discriminating NSCLC subtypes, especially in the early stage of cancer. Moreover, the presented results also indicated the activity of new metabolic pathways in NSCLC. Further investigations on the role of NAE biosynthesis pathways in the early stage of NSCLC may reveal new prognostic and diagnostic targets.


Sign in / Sign up

Export Citation Format

Share Document