Plant-produced Recombinant Influenza A Vaccines Based on the M2e Peptide

2018 ◽  
Vol 24 (12) ◽  
pp. 1317-1324 ◽  
Author(s):  
Eugenia S. Mardanova ◽  
Nikolai V. Ravin

Background: Influenza is a widely distributed infection that almost annually causes seasonal epidemics. The current egg-based platforms for influenza vaccine production are facing a number of challenges and are failing to satisfy the global demand in the case of pandemics due to the long production time. Recombinant vaccines are an alternative that can be quickly produced in high quantities in standard expression systems. Methods: : Plants may become a promising biofactory for the large-scale production of recombinant proteins due to low cost, scalability, and safety. Plant-based expression systems have been used to produce recombinant vaccines against influenza based on two targets; the major surface antigen hemagglutinin and the transmembrane protein M2. <P> Results: Different forms of recombinant hemagglutinin were successfully expressed in plants, and some plantproduced vaccines based on hemagglutinin were successfully tested in clinical trials. However, these vaccines remain strain specific, while the highly conserved extracellular domain of the M2 protein (M2e) could be used for the development of a universal influenza vaccine. In this review, the state of the art in developing plant-produced influenza vaccines based on M2e is presented and placed in perspective. A number of strategies to produce M2e in an immunogenic form in plants have been reported, including its presentation on the surface of plant viruses or virus-like particles formed by capsid proteins, linkage to bacterial flagellin, and targeting to protein bodies. Conclusion: Some M2e-based vaccine candidates were produced at high levels (up to 1 mg/g of fresh plant tissue) and were shown to be capable of stimulating broad-range protective immunity.

2014 ◽  
Vol 61 (3) ◽  
Author(s):  
Patrycja Redkiewicz ◽  
Agnieszka Sirko ◽  
Katarzyna Anna Kamel ◽  
Anna Góra-Sochacka

Many examples of a successful application of plant-based expression systems for production of biologically active recombinant proteins exist in the literature. These systems can function as inexpensive platforms for the large scale production of recombinant pharmaceuticals or subunit vaccines. Hemagglutinin (HA) is a major surface antigen of the influenza virus, thus it is in the centre of interests of various subunit vaccine engineering programs. Large scale production of recombinant HA in traditional expression systems, such as mammalian or insect cells, besides other limitations, is expensive and time-consuming. These difficulties stimulate an ever-increasing interest in plant-based production of this recombinant protein. Over the last few years many successful cases of HA production in plants, using both transient and stable expression systems have been reported. Various forms of recombinant HA, including monomers, trimers, virus like particles (VLPs) or chimeric proteins containing its fusion with other polypeptides were obtained and shown to maintain a proper antigenicity. Immunizations of animals (mice, ferrets, rabbits or chickens) with some of these plant-derived hemagglutinin variants were performed, and their effectiveness in induction of immunological response and protection against lethal challenge with influenza virus demonstrated. Plant-produced recombinant subunit vaccines and plant-made VLPs were successfully tested in clinical trials (Phase I and II) that confirmed their tolerance and immunogenicity.


2020 ◽  
Vol 9 (1) ◽  
pp. 751-759 ◽  
Author(s):  
Xinxin Lian ◽  
Yuanjiang Lv ◽  
Haoliang Sun ◽  
David Hui ◽  
Guangxin Wang

AbstractAg nanoparticles/Mo–Ag alloy films with different Ag contents were prepared on polyimide by magnetron sputtering. The effects of Ag contents on the microstructure of self-grown Ag nanoparticles/Mo–Ag alloy films were investigated using XRD, FESEM, EDS and TEM. The Ag content plays an important role in the size and number of uniformly distributed Ag nanoparticles spontaneously formed on the Mo–Ag alloy film surface, and the morphology of the self-grown Ag nanoparticles has changed significantly. Additionally, it is worth noting that the Ag nanoparticles/Mo–Ag alloy films covered by a thin Ag film exhibits highly sensitive surface-enhanced Raman scattering (SERS) performance. The electric field distributions were calculated using finite-difference time-domain analysis to further prove that the SERS enhancement of the films is mainly determined by “hot spots” in the interparticle gap between Ag nanoparticles. The detection limit of the Ag film/Ag nanoparticles/Mo–Ag alloy film for Rhodamine 6G probe molecules was 5 × 10−14 mol/L. Therefore, the novel type of the Ag film/Ag nanoparticles/Mo–Ag alloy film can be used as an ideal SERS-active substrate for low-cost and large-scale production.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1706
Author(s):  
Zacharias Viskadourakis ◽  
Argiri Drymiskianaki ◽  
Vassilis M. Papadakis ◽  
Ioanna Ioannou ◽  
Theodora Kyratsi ◽  
...  

In the current study, polymer-based composites, consisting of Acrylonitrile Butadiene Styrene (ABS) and Bismuth Antimony Telluride (BixSb2−xTe3), were produced using mechanical mixing and hot pressing. These composites were investigated regarding their electrical resistivity and Seebeck coefficient, with respect to Bi doping and BixSb2-xTe3 loading into the composite. Experimental results showed that their thermoelectric performance is comparable—or even superior, in some cases—to reported thermoelectric polymer composites that have been produced using other complex techniques. Consequently, mechanically mixed polymer-based thermoelectric materials could be an efficient method for low-cost and large-scale production of polymer composites for potential thermoelectric applications.


2020 ◽  
Author(s):  
Diletta Morelli Venturi ◽  
Filippo Campana ◽  
Fabio Marmottini ◽  
Ferdinando Costantino ◽  
Luigi Vaccaro

<p>Zirconium based Metal-Organic Framework UiO-66 is to date considered one of the benchmark compound among stable MOFs and it has attracted a huge attention for its employment in many strategic applications. Large scale production of UiO-66 for industrial purposes requires the use of safe and green solvents, fulfilling the green chemistry principles and able to replace the use of <i>N,N</i>-Dimethyl-Formamide (DMF), which, despite its toxicity, is still considered the most efficient solvent for obtaining UiO-66 of high quality. Herein we report on a survey of about 40 different solvents with different polarity, boiling point and acidity, used for the laboratory scale synthesis of high quality UiO-66 crystals. The solvents were chosen according the European REACH Regulation 1907/2006 among those having low cost, low toxicity and fully biodegradable. Concerning MOF synthesis, the relevant parameters chosen for establishing the quality of the results obtained are the degree are the crystallinity, microporosity and specific surface area, yield and solvent recyclability. Taking into account also the chemical physical properties of all the solvents, a color code was assigned in order to give a final green assessment for the UiO-66 synthesis. Defectivity of the obtained products, the use of acidic modulators and the use of alternative Zr-salts have been also taken into consideration. Preliminary results lead to conclude that GVL (γ-valerolactone) is among the most promising solvents for replacing DMF in UiO-66 MOF synthesis. </p>


2021 ◽  
Vol 2115 (1) ◽  
pp. 012026
Author(s):  
Sonam Solanki ◽  
Gunendra Mahore

Abstract In the current process of producing vermicompost on a large-scale, the main challenge is to keep the worms alive. This is achieved by maintaining temperature and moisture in their living medium. It is a difficult task to maintain these parameters throughout the process. Currently, this is achieved by building infrastructure but this method requires a large initial investment and long-run maintenance. Also, these methods are limited to small-scale production. For large-scale production, a unit is developed which utilises natural airflow with water and automation. The main aim of this unit is to provide favourable conditions to worms in large-scale production with very low investment and minimum maintenance in long term. The key innovation of this research is that the technology used in the unit should be practical and easy to adopt by small farmers. For long-term maintenance of the technology lesser number of parts are used.


2020 ◽  
Author(s):  
Diletta Morelli Venturi ◽  
Filippo Campana ◽  
Fabio Marmottini ◽  
Ferdinando Costantino ◽  
Luigi Vaccaro

<p>Zirconium based Metal-Organic Framework UiO-66 is to date considered one of the benchmark compound among stable MOFs and it has attracted a huge attention for its employment in many strategic applications. Large scale production of UiO-66 for industrial purposes requires the use of safe and green solvents, fulfilling the green chemistry principles and able to replace the use of <i>N,N</i>-Dimethyl-Formamide (DMF), which, despite its toxicity, is still considered the most efficient solvent for obtaining UiO-66 of high quality. Herein we report on a survey of about 40 different solvents with different polarity, boiling point and acidity, used for the laboratory scale synthesis of high quality UiO-66 crystals. The solvents were chosen according the European REACH Regulation 1907/2006 among those having low cost, low toxicity and fully biodegradable. Concerning MOF synthesis, the relevant parameters chosen for establishing the quality of the results obtained are the degree are the crystallinity, microporosity and specific surface area, yield and solvent recyclability. Taking into account also the chemical physical properties of all the solvents, a color code was assigned in order to give a final green assessment for the UiO-66 synthesis. Defectivity of the obtained products, the use of acidic modulators and the use of alternative Zr-salts have been also taken into consideration. Preliminary results lead to conclude that GVL (γ-valerolactone) is among the most promising solvents for replacing DMF in UiO-66 MOF synthesis. </p>


2012 ◽  
Vol 2012 (1) ◽  
pp. 000604-000608
Author(s):  
Matthias Hartmann ◽  
Bertram Schmidt

The current research presents recent respective to the work development of a ceramic tubular probe for online substance concentration measurements. The aim was to develop a robust and acid-resistant sensor device, which can be easily included in existing procedural pipeline systems. To archive those goals a lot of factors had to be checked. For the substance concentration measurements a capacitive sensor effect was chosen. With this method even low substance concentrations down to one-tenth of a per cent can be indentified. For the package material zirconium oxide (tetragonal zirconia polycrystal – TZP) was used. Zirconium oxide is a technical ceramic which is wear-resistant, acid-resistant, has a low thermal conductivity, is electrically isolating and can be uses in a ceramic injection molding (CIM) process. In the phase of the sensor design process multiple geometries for the sensor effect and integration space for the evaluation electronics had to be considered. A standardized DN 10 DIN 32676 flanged joint was also added for an unproblematic connection to the pipelines. All these needed geometries had to be integrated into one ceramic element. As a result of these requirements a 3D CAD model of the sensor element was designed. The CAD-file has shown that there was only the CIM technology left to comprehend developed sensor geometry. CIM is a low cost process for large-scale production which is distinguished by high size accuracy. In the CIM process the material shrinkage, this is caused by the needed debindering and sintering steps, had to be considered. The developed ceramic tubular probe was successfully tested in multiple fluidic systems. It has left the test phase and is now ready for maturity phase.


Vaccines ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 45 ◽  
Author(s):  
Xueting Qiu ◽  
Venkata R. Duvvuri ◽  
Justin Bahl

The traditional design of effective vaccines for rapidly-evolving pathogens, such as influenza A virus, has failed to provide broad spectrum and long-lasting protection. With low cost whole genome sequencing technology and powerful computing capabilities, novel computational approaches have demonstrated the potential to facilitate the design of a universal influenza vaccine. However, few studies have integrated computational optimization in the design and discovery of new vaccines. Understanding the potential of computational vaccine design is necessary before these approaches can be implemented on a broad scale. This review summarizes some promising computational approaches under current development, including computationally optimized broadly reactive antigens with consensus sequences, phylogenetic model-based ancestral sequence reconstruction, and immunomics to compute conserved cross-reactive T-cell epitopes. Interactions between virus-host-environment determine the evolvability of the influenza population. We propose that with the development of novel technologies that allow the integration of data sources such as protein structural modeling, host antibody repertoire analysis and advanced phylodynamic modeling, computational approaches will be crucial for the development of a long-lasting universal influenza vaccine. Taken together, computational approaches are powerful and promising tools for the development of a universal influenza vaccine with durable and broad protection.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Hossein Alishah Aratboni ◽  
Nahid Rafiei ◽  
Raul Garcia-Granados ◽  
Abbas Alemzadeh ◽  
José Rubén Morones-Ramírez

Abstract The use of fossil fuels has been strongly related to critical problems currently affecting society, such as: global warming, global greenhouse effects and pollution. These problems have affected the homeostasis of living organisms worldwide at an alarming rate. Due to this, it is imperative to look for alternatives to the use of fossil fuels and one of the relevant substitutes are biofuels. There are different types of biofuels (categories and generations) that have been previously explored, but recently, the use of microalgae has been strongly considered for the production of biofuels since they present a series of advantages over other biofuel production sources: (a) they don’t need arable land to grow and therefore do not compete with food crops (like biofuels produced from corn, sugar cane and other plants) and; (b) they exhibit rapid biomass production containing high oil contents, at least 15 to 20 times higher than land based oleaginous crops. Hence, these unicellular photosynthetic microorganisms have received great attention from researches to use them in the large-scale production of biofuels. However, one disadvantage of using microalgae is the high economic cost due to the low-yields of lipid content in the microalgae biomass. Thus, development of different methods to enhance microalgae biomass, as well as lipid content in the microalgae cells, would lead to the development of a sustainable low-cost process to produce biofuels. Within the last 10 years, many studies have reported different methods and strategies to induce lipid production to obtain higher lipid accumulation in the biomass of microalgae cells; however, there is not a comprehensive review in the literature that highlights, compares and discusses these strategies. Here, we review these strategies which include modulating light intensity in cultures, controlling and varying CO2 levels and temperature, inducing nutrient starvation in the culture, the implementation of stress by incorporating heavy metal or inducing a high salinity condition, and the use of metabolic and genetic engineering techniques coupled with nanotechnology.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5558
Author(s):  
Dimitra Vernardou ◽  
Charalampos Drosos ◽  
Andreas Kafizas ◽  
Martyn E. Pemble ◽  
Emmanouel Koudoumas

The need for clean and efficient energy storage has become the center of attention due to the eminent global energy crisis and growing ecological concerns. A key component in this effort is the ultra-high performance battery, which will play a major role in the energy industry. To meet the demands in portable electronic devices, electric vehicles, and large-scale energy storage systems, it is necessary to prepare advanced batteries with high safety, fast charge ratios, and discharge capabilities at a low cost. Cathode materials play a significant role in determining the performance of batteries. Among the possible electrode materials is vanadium pentoxide, which will be discussed in this review, due to its low cost and high theoretical capacity. Additionally, aqueous electrolytes, which are environmentally safe, provide an alternative approach compared to organic media for safe, cost-effective, and scalable energy storage. In this review, we will reveal the industrial potential of competitive methods to grow cathodes with excellent stability and enhanced electrochemical performance in aqueous media and lay the foundation for the large-scale production of electrode materials.


Sign in / Sign up

Export Citation Format

Share Document