Prediction of K562 Cells Functional Inhibitors Based on Machine Learning Approaches

2020 ◽  
Vol 25 (40) ◽  
pp. 4296-4302 ◽  
Author(s):  
Yuan Zhang ◽  
Zhenyan Han ◽  
Qian Gao ◽  
Xiaoyi Bai ◽  
Chi Zhang ◽  
...  

Background: β thalassemia is a common monogenic genetic disease that is very harmful to human health. The disease arises is due to the deletion of or defects in β-globin, which reduces synthesis of the β-globin chain, resulting in a relatively excess number of α-chains. The formation of inclusion bodies deposited on the cell membrane causes a decrease in the ability of red blood cells to deform and a group of hereditary haemolytic diseases caused by massive destruction in the spleen. Methods: In this work, machine learning algorithms were employed to build a prediction model for inhibitors against K562 based on 117 inhibitors and 190 non-inhibitors. Results: The overall accuracy (ACC) of a 10-fold cross-validation test and an independent set test using Adaboost were 83.1% and 78.0%, respectively, surpassing Bayes Net, Random Forest, Random Tree, C4.5, SVM, KNN and Bagging. Conclusion: This study indicated that Adaboost could be applied to build a learning model in the prediction of inhibitors against K526 cells.

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Shilun Yang ◽  
Yanjia Shen ◽  
Wendan Lu ◽  
Yinglin Yang ◽  
Haigang Wang ◽  
...  

Xiaoxuming decoction (XXMD), a classic traditional Chinese medicine (TCM) prescription, has been used as a therapeutic in the treatment of stroke in clinical practice for over 1200 years. However, the pharmacological mechanisms of XXMD have not yet been elucidated. The purpose of this study was to develop neuroprotective models for identifying neuroprotective compounds in XXMD against hypoxia-induced and H2O2-induced brain cell damage. In this study, a phenotype-based classification method was designed by machine learning to identify neuroprotective compounds and to clarify the compatibility of XXMD components. Four different single classifiers (AB, kNN, CT, and RF) and molecular fingerprint descriptors were used to construct stacked naïve Bayesian models. Among them, the RF algorithm had a better performance with an average MCC value of 0.725±0.014 and 0.774±0.042 from 5-fold cross-validation and test set, respectively. The probability values calculated by four models were then integrated into a stacked Bayesian model. In total, two optimal models, s-NB-1-LPFP6 and s-NB-2-LPFP6, were obtained. The two validated optimal models revealed Matthews correlation coefficients (MCC) of 0.968 and 0.993 for 5-fold cross-validation and of 0.874 and 0.959 for the test set, respectively. Furthermore, the two models were used for virtual screening experiments to identify neuroprotective compounds in XXMD. Ten representative compounds with potential therapeutic effects against the two phenotypes were selected for further cell-based assays. Among the selected compounds, two compounds significantly inhibited H2O2-induced and Na2S2O4-induced neurotoxicity simultaneously. Together, our findings suggested that machine learning algorithms such as combination Bayesian models were feasible to predict neuroprotective compounds and to preliminarily demonstrate the pharmacological mechanisms of TCM.


Author(s):  
Luis Rolando Guarneros-Nolasco ◽  
Nancy Aracely Cruz-Ramos ◽  
Giner Alor-Hernández ◽  
Lisbeth Rodríguez-Mazahua ◽  
José Luis Sánchez-Cervantes

CVDs are a leading cause of death globally. In CVDs, the heart is unable to deliver enough blood to other body regions. Since effective and accurate diagnosis of CVDs is essential for CVD prevention and treatment, machine learning (ML) techniques can be effectively and reliably used to discern patients suffering from a CVD from those who do not suffer from any heart condition. Namely, machine learning algorithms (MLAs) play a key role in the diagnosis of CVDs through predictive models that allow us to identify the main risks factors influencing CVD development. In this study, we analyze the performance of ten MLAs on two datasets for CVD prediction and two for CVD diagnosis. Algorithm performance is analyzed on top-two and top-four dataset attributes/features with respect to five performance metrics –accuracy, precision, recall, f1-score, and roc-auc – using the train-test split technique and k-fold cross-validation. Our study identifies the top two and four attributes from each CVD diagnosis/prediction dataset. As our main findings, the ten MLAs exhibited appropriate diagnosis and predictive performance; hence, they can be successfully implemented for improving current CVD diagnosis efforts and help patients around the world, especially in regions where medical staff is lacking.


In machine learning, Classification is one of the most important research area. Classification allocates the given input to a known category. In this paper different machine algorithms like Logistic regression (LR), Decision tree (DT), Support vector machine (SVM), K nearest neighbors (KNN) were implemented on UCI breast cancer dataset with preprocessing. The models were trained and tested with k-fold cross validation data. Accuracy and run time execution of each classifier are implemented in python.


2019 ◽  
Vol 9 (16) ◽  
pp. 3322 ◽  
Author(s):  
Stephen Dankwa ◽  
Wenfeng Zheng

Machine learning (ML) is the technology that allows a computer system to learn from the environment, through re-iterative processes, and improve itself from experience. Recently, machine learning has gained massive attention across numerous fields, and is making it easy to model data extremely well, without the importance of using strong assumptions about the modeled system. The rise of machine learning has proven to better describe data as a result of providing both engineering solutions and an important benchmark. Therefore, in this current research work, we applied three different machine learning algorithms, which were, the Random Forest (RF), Support Vector Machines (SVM), and Artificial Neural Network (ANN) to predict kyphosis disease based on a biomedical data. At the initial stage of the experiments, we performed 5- and 10-Fold Cross-Validation using Logistic Regression as a baseline model to compare with our ML models without performing grid search. We then evaluated the models and compared their performances based on 5- and 10-Fold Cross-Validation after running grid search algorithms on the ML models. Among the Support Vector Machines, we experimented with the three kernels (Linear, Radial Basis Function (RBF), Polynomial). We observed overall accuracies of the models between 79%–85%, and 77%–86% based on the 5- and 10-Fold Cross-Validation, after running grid search respectively. Based on the 5- and 10-Fold Cross-Validation as evaluation metrics, the RF, SVM-RBF, and ANN models achieved accuracies more than 80%. The RF, SVM-RBF and ANN models outperformed the baseline model based on the 10-Fold Cross-Validation with grid search. Overall, in terms of accuracies, the ANN model outperformed all the other ML models, achieving 85.19% and 86.42% based on the 5- and 10-Fold Cross-Validation. We proposed that RF, SVM-RBF and ANN models should be used to detect and predict kyphosis disease after a patient had undergone surgery or operation. We suggest that machine learning should be adopted and used as an essential and critical tool across the maximum spectrum of answering biomedical questions.


CJEM ◽  
2017 ◽  
Vol 19 (S1) ◽  
pp. S88
Author(s):  
A. Ariaeinejad ◽  
R. Patel ◽  
T.M. Chan ◽  
R. Samavi

Introduction: Background: Medical education is transitioning from a time-based system to a competency-based framework. In the age of Competency-Based Medical Education, however, there is a drastically increased amount of data that needs to be interpreted. With this data, however, comes an opportunity to develop predictive analytics. Machine learning is a method of data analysis that automates analytical model building. Using algorithms that iteratively learn from data, machine learning allows computers to find hidden insights without being explicitly programmed where to look. Machine learning has been successfully used in other fields to create predictive models. Objective: This study evaluates the application of neural network as a machine learning algorithm in learning from historical data in emergency residency program and predicting future resident performance. Methods: We analyzed performance data for 16 residents (PGY1-5) who were assessed at end of each shift. Performance was graded in each of the CanMEDS Roles with scores from 1 to 7 by different attending physicians who observed residents during the shift. We transformed sequences of scores for each resident to a fixed set of features and combined all of them in one dataset. We considered scores under 6 as “At Risk Resident” and scores 6 or more as “Competent Resident”, and then we separated the dataset into training and testing sets using K-Fold cross validation and trained an artificial Neural Network in order to make decision about the future situation of residents in a specific CanMEDS Role and general performance. Results: We used 5-fold cross validation to evaluate the model, one round of cross-validation involves partitioning the whole data into complementary subsets, performing the training phase on the training set, and validating the analysis on the testing set. To reduce variability, multiple rounds of cross-validation are performed using different partitions, and the validation results are averaged over the rounds. Results of cross validation show that accuracy of model was 72%, sensitivity was 81% and specificity was 43%. Conclusion: Machine learning algorithms such (as Neural Network) have the ability to predict future resident performance on a global level and within specific domains (i.e. CanMEDS roles). Used appropriately, such information may be a valuable for monitoring resident progress.


Author(s):  
Magdalena Kukla-Bartoszek ◽  
Paweł Teisseyre ◽  
Ewelina Pośpiech ◽  
Joanna Karłowska-Pik ◽  
Piotr Zieliński ◽  
...  

AbstractIncreasing understanding of human genome variability allows for better use of the predictive potential of DNA. An obvious direct application is the prediction of the physical phenotypes. Significant success has been achieved, especially in predicting pigmentation characteristics, but the inference of some phenotypes is still challenging. In search of further improvements in predicting human eye colour, we conducted whole-exome (enriched in regulome) sequencing of 150 Polish samples to discover new markers. For this, we adopted quantitative characterization of eye colour phenotypes using high-resolution photographic images of the iris in combination with DIAT software analysis. An independent set of 849 samples was used for subsequent predictive modelling. Newly identified candidates and 114 additional literature-based selected SNPs, previously associated with pigmentation, and advanced machine learning algorithms were used. Whole-exome sequencing analysis found 27 previously unreported candidate SNP markers for eye colour. The highest overall prediction accuracies were achieved with LASSO-regularized and BIC-based selected regression models. A new candidate variant, rs2253104, located in the ARFIP2 gene and identified with the HyperLasso method, revealed predictive potential and was included in the best-performing regression models. Advanced machine learning approaches showed a significant increase in sensitivity of intermediate eye colour prediction (up to 39%) compared to 0% obtained for the original IrisPlex model. We identified a new potential predictor of eye colour and evaluated several widely used advanced machine learning algorithms in predictive analysis of this trait. Our results provide useful hints for developing future predictive models for eye colour in forensic and anthropological studies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A62-A62
Author(s):  
Dattatreya Mellacheruvu ◽  
Rachel Pyke ◽  
Charles Abbott ◽  
Nick Phillips ◽  
Sejal Desai ◽  
...  

BackgroundAccurately identified neoantigens can be effective therapeutic agents in both adjuvant and neoadjuvant settings. A key challenge for neoantigen discovery has been the availability of accurate prediction models for MHC peptide presentation. We have shown previously that our proprietary model based on (i) large-scale, in-house mono-allelic data, (ii) custom features that model antigen processing, and (iii) advanced machine learning algorithms has strong performance. We have extended upon our work by systematically integrating large quantities of high-quality, publicly available data, implementing new modelling algorithms, and rigorously testing our models. These extensions lead to substantial improvements in performance and generalizability. Our algorithm, named Systematic HLA Epitope Ranking Pan Algorithm (SHERPA™), is integrated into the ImmunoID NeXT Platform®, our immuno-genomics and transcriptomics platform specifically designed to enable the development of immunotherapies.MethodsIn-house immunopeptidomic data was generated using stably transfected HLA-null K562 cells lines that express a single HLA allele of interest, followed by immunoprecipitation using W6/32 antibody and LC-MS/MS. Public immunopeptidomics data was downloaded from repositories such as MassIVE and processed uniformly using in-house pipelines to generate peptide lists filtered at 1% false discovery rate. Other metrics (features) were either extracted from source data or generated internally by re-processing samples utilizing the ImmunoID NeXT Platform.ResultsWe have generated large-scale and high-quality immunopeptidomics data by using approximately 60 mono-allelic cell lines that unambiguously assign peptides to their presenting alleles to create our primary models. Briefly, our primary ‘binding’ algorithm models MHC-peptide binding using peptide and binding pockets while our primary ‘presentation’ model uses additional features to model antigen processing and presentation. Both primary models have significantly higher precision across all recall values in multiple test data sets, including mono-allelic cell lines and multi-allelic tissue samples. To further improve the performance of our model, we expanded the diversity of our training set using high-quality, publicly available mono-allelic immunopeptidomics data. Furthermore, multi-allelic data was integrated by resolving peptide-to-allele mappings using our primary models. We then trained a new model using the expanded training data and a new composite machine learning architecture. The resulting secondary model further improves performance and generalizability across several tissue samples.ConclusionsImproving technologies for neoantigen discovery is critical for many therapeutic applications, including personalized neoantigen vaccines, and neoantigen-based biomarkers for immunotherapies. Our new and improved algorithm (SHERPA) has significantly higher performance compared to a state-of-the-art public algorithm and furthers this objective.


2021 ◽  
Vol 35 (1) ◽  
pp. 11-21
Author(s):  
Himani Tyagi ◽  
Rajendra Kumar

IoT is characterized by communication between things (devices) that constantly share data, analyze, and make decisions while connected to the internet. This interconnected architecture is attracting cyber criminals to expose the IoT system to failure. Therefore, it becomes imperative to develop a system that can accurately and automatically detect anomalies and attacks occurring in IoT networks. Therefore, in this paper, an Intrsuion Detection System (IDS) based on extracted novel feature set synthesizing BoT-IoT dataset is developed that can swiftly, accurately and automatically differentiate benign and malicious traffic. Instead of using available feature reduction techniques like PCA that can change the core meaning of variables, a unique feature set consisting of only seven lightweight features is developed that is also IoT specific and attack traffic independent. Also, the results shown in the study demonstrates the effectiveness of fabricated seven features in detecting four wide variety of attacks namely DDoS, DoS, Reconnaissance, and Information Theft. Furthermore, this study also proves the applicability and efficiency of supervised machine learning algorithms (KNN, LR, SVM, MLP, DT, RF) in IoT security. The performance of the proposed system is validated using performance Metrics like accuracy, precision, recall, F-Score and ROC. Though the accuracy of Decision Tree (99.9%) and Randon Forest (99.9%) Classifiers are same but other metrics like training and testing time shows Random Forest comparatively better.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 582
Author(s):  
Holger Behrends ◽  
Dietmar Millinger ◽  
Werner Weihs-Sedivy ◽  
Anže Javornik ◽  
Gerold Roolfs ◽  
...  

Faults and unintended conditions in grid-connected photovoltaic systems often cause a change of the residual current. This article describes a novel machine learning based approach to detecting anomalies in the residual current of a photovoltaic system. It can be used to detect faults or critical states at an early stage and extends conventional threshold-based detection methods. For this study, a power-hardware-in-the-loop approach was carried out, in which typical faults have been injected under ideal and realistic operating conditions. The investigation shows that faults in a photovoltaic converter system cause a unique behaviour of the residual current and fault patterns can be detected and identified by using pattern recognition and variational autoencoder machine learning algorithms. In this context, it was found that the residual current is not only affected by malfunctions of the system, but also by volatile external influences. One of the main challenges here is to separate the regular residual currents caused by the interferences from those caused by faults. Compared to conventional methods, which respond to absolute changes in residual current, the two machine learning models detect faults that do not affect the absolute value of the residual current.


Sign in / Sign up

Export Citation Format

Share Document