Chalcone Derived Pyrazole Synthesis via One-pot and Two-pot Strategies

2020 ◽  
Vol 24 (13) ◽  
pp. 1491-1506
Author(s):  
Saba Farooq ◽  
Zainab Ngaini

Pyrazole is an imperative heterocyclic molecule in the synthetic and medicinal fields. Pyrazole is stable compound that is particularly used in pharmaceutical applications (i.e., anticancer, antifungal, antiviral, antimicrobial and antioxidant) and electronic industries. This review depicted the synthesis of pyrazoles derivatives by employing chalcone derivatives as a starting material via one and two-pot strategies. The one-pot strategy is an exclusive method for chalcone cyclization and oxidation, while two-pot strategy is reported through the preparation of chalcone derivatives, i.e., pyrazoline, hydrazone and bromochalcone prior to the synthesis of pyrazole. One-pot strategy is frequently reported for pyrazole synthesis purposes due to unique, stable, reactive and well-known chalcone reactants having easy handing then two-pot strategy. This review is momentous in organic chemistry, especially synthesis related to pyrazole and drug industry.

1992 ◽  
Vol 70 (4) ◽  
pp. 1204-1220 ◽  
Author(s):  
Edward Piers ◽  
Richard W. Friesen

Alkylation of the substituted cycloalkanones 14a–d and 30 with (Z)-1-bromo-4-methyl-3-trimethylstannyl-2-pentene (13) produced compounds 15a–d and 33, which were readily converted into the corresponding enol trifluoromethane-sulfonates (triflates) 16a–d and 34. Intramolecular Pd(O)-catalyzed coupling of the vinylstannane and enol triflate functions in 16a–d and 34 provided the dienes 17a–d and 35. The annulation product 35 served as a suitable starting material for the total syntheses of the dolastane diterpenoids (±)-(5S,12R,14S)-dolasta-1(15),7,9-trien-14-ol (2) and (±)-amijitrienol (3). The key steps of the synthesis of (±)-2 involved the stereoselective methylation of the ketone 44 (readily derived from 35) to provide 46 and the Barbier type ring closure of 47 to provide the target compound. For the synthesis of (±)-3, the notable conversions included the reductive transformation of the diene 35 into the alkene 53, the aldol condensation of the ketone 54 with 4-trimethylstannyl-4-pentenal (55), the chemo- and stereoselective reduction of the dione 58, and the one-pot conversion of the keto vinylstannane 63 into the triene 65, via the intermediate 64.


2021 ◽  
Author(s):  
Saideh Rajai-Daryasarei ◽  
Mohammad Hossein Gohari ◽  
Narges Mohammadi

The preparation of heterocyclic compounds has attracted great attention in organic chemistry because of their extensive presence in bioactive molecules, material sciences, and natural products. Accordingly, the straightforward design and...


2021 ◽  
Vol 08 ◽  
Author(s):  
Davood Habibi ◽  
Saeedeh Shojaei ◽  
Somayyeh Heydari

Background: The multi component reaction (MCRs) is a method extensively used in organic chemistry as a tool in the synthesis of nitrogen containing heterocycles found in many natural products, medicinally relevant substances and organic materials. Objective: This paper describes the synthesis of a diverse range of 1H-pyrazolo[1,2-b]phthalazine-2-carbonitriles of considerable chemical and biological interests. Conclusion: Various 3-amino-5,10-dioxo-1-phenyl-5,10-dihydro-1H-pyrazolo[1,2-b]phthalazine-2-carbo -nitriles were synthesized via the one-pot three component reaction of phthalhydrazides, aromatic aldehydes and malononitrile in the presence of the proline as an organocatalyst in ethanol at refluxing temperature under the green conditions in excellent yields.


2020 ◽  
Vol 32 (5) ◽  
pp. 1145-1150
Author(s):  
J.H. Song ◽  
S.M. Bae ◽  
S.K. Cho ◽  
J.H. Cho ◽  
D.I. Jung

Robinson′s synthesis has long been a classic in organic chemistry due to its simplicity and impact in the industry. Various modifications have been made to improve the system. Among them, replacing acetone with more acidic chemical equivalents such as calcium dicarboxylic acid or ethyl dicarboxylic acetone improved the yield. In line with this trend, our group previously reported the synthesis of mono- and di-N-substituted tropinone derivatives from the one-pot reaction of 2,5-dimethoxy tetrahydrofuran and various amines with acetonedicarboxylic acid in the presence of HCl and water at room temperature. In this study, the synthesis with acetone instead of acetone-dicarboxylic acid was examined. Mono- and di-N-substituted nortropinones were prepared in higher yields in all cases although there were extent to which yields increased depending on the nature of substituents


2018 ◽  
Author(s):  
Huong T. D. Nguyen ◽  
Y B. N. Tran ◽  
Hung N. Nguyen ◽  
Tranh C. Nguyen ◽  
Felipe Gándara ◽  
...  

<p>Three novel lanthanide metal˗organic frameworks (Ln-MOFs), namely MOF-590, -591, and -592 were constructed from a naphthalene diimide tetracarboxylic acid. Gas adsorption measurements of MOF-591 and -592 revealed good adsorption of CO<sub>2</sub> (low pressure, at room temperature) and moderate CO<sub>2</sub> selectivity over N<sub>2</sub> and CH<sub>4</sub>. Accordingly, breakthrough measurements were performed on a representative MOF-592, in which the separation of CO<sub>2</sub> from binary mixture containing N<sub>2</sub> and CO<sub>2</sub> was demonstrated without any loss in performance over three consecutive cycles. Moreover, MOF-590, MOF-591, and MOF-592 exhibited catalytic activity in the one-pot synthesis of styrene carbonate from styrene and CO<sub>2</sub> under mild conditions (1 atm CO<sub>2</sub>, 80 °C, and solvent-free). Among the new materials, MOF-590 revealed a remarkable efficiency with exceptional conversion (96%), selectivity (95%), and yield (91%). </p><br>


2020 ◽  
Vol 24 (4) ◽  
pp. 465-471 ◽  
Author(s):  
Zita Rádai ◽  
Réka Szabó ◽  
Áron Szigetvári ◽  
Nóra Zsuzsa Kiss ◽  
Zoltán Mucsi ◽  
...  

The phospha-Brook rearrangement of dialkyl 1-aryl-1-hydroxymethylphosphonates (HPs) to the corresponding benzyl phosphates (BPs) has been elaborated under solid-liquid phase transfer catalytic conditions. The best procedure involved the use of triethylbenzylammonium chloride as the catalyst and Cs2CO3 as the base in acetonitrile as the solvent at room temperature. The substrate dependence of the rearrangement has been studied, and the mechanism of the transformation under discussion was explored by quantum chemical calculations. The key intermediate is an oxaphosphirane. The one-pot version starting with the Pudovik reaction has also been developed. The conditions of this tandem transformation were the same, as those for the one-step HP→BP conversion.


2020 ◽  
Vol 24 (20) ◽  
pp. 2341-2355
Author(s):  
Thaipparambil Aneeja ◽  
Sankaran Radhika ◽  
Mohan Neetha ◽  
Gopinathan Anilkumar

One-pot syntheses are a simple, efficient and easy methodology, which are widely used for the synthesis of organic compounds. Imidazoline is a valuable heterocyclic moiety used as a synthetic intermediate, chiral auxiliary, chiral catalyst and a ligand for asymmetric catalysis. Imidazole is a fundamental unit of biomolecules that can be easily prepared from imidazolines. The one-pot method is an impressive approach to synthesize organic compounds as it minimizes the reaction time, separation procedures, and ecological impact. Many significant one-pot methods such as N-bromosuccinimide mediated reaction, ring-opening of tetrahydrofuran, triflic anhydrate mediated reaction, etc. were reported for imidazoline synthesis. This review describes an overview of the one-pot synthesis of imidazolines and covers literature up to 2020.


2018 ◽  
Vol 21 (4) ◽  
pp. 302-311
Author(s):  
Younes Ghalandarzehi ◽  
Mehdi Shahraki ◽  
Sayyed M. Habibi-Khorassani

Aim & Scope: The synthesis of highly substituted piperidine from the one-pot reaction between aromatic aldehydes, anilines and β-ketoesters in the presence of tartaric acid as a catalyst has been investigated in both methanol and ethanol media at ambient temperature. Different conditions of temperature and solvent were employed for calculating the thermodynamic parameters and obtaining an experimental approach to the kinetics and mechanism. Experiments were carried out under different temperature and solvent conditions. Material and Methods: Products were characterized by comparison of physical data with authentic samples and spectroscopic data (IR and NMR). Rate constants are presented as an average of several kinetic runs (at least 6-10) and are reproducible within ± 3%. The overall rate of reaction is followed by monitoring the absorbance changes of the products versus time on a Varian (Model Cary Bio- 300) UV-vis spectrophotometer with a 10 mm light-path cell. Results: The best result was achieved in the presence of 0.075 g (0.1 M) of catalyst and 5 mL methanol at ambient temperature. When the reaction was carried out under solvent-free conditions, the product was obtained in a moderate yield (25%). Methanol was optimized as a desirable solvent in the synthesis of piperidine, nevertheless, ethanol in a kinetic investigation had none effect on the enhancement of the reaction rate than methanol. Based on the spectral data, the overall order of the reaction followed the second order kinetics. The results showed that the first step of the reaction mechanism is a rate determining step. Conclusion: The use of tartaric acid has many advantages such as mild reaction conditions, simple and readily available precursors and inexpensive catalyst. The proposed mechanism was confirmed by experimental results and a steady state approximation.


2015 ◽  
Vol 12 (3) ◽  
pp. 197-204 ◽  
Author(s):  
Prabhakar Rairala ◽  
Bandi Yadagiri ◽  
Rajashaker Bantu ◽  
Vijayacharan Guguloth ◽  
Lingaiah Nagarapu

Sign in / Sign up

Export Citation Format

Share Document