Peptidomimetics and Peptide-Based Blockbuster Drugs

2021 ◽  
Vol 25 ◽  
Author(s):  
Jianlin Han ◽  
Hiroyuki Konno ◽  
Tatsunori Sato ◽  
Kunisuke Izawa ◽  
Vadim A. Soloshonok

: Amino acids (AAs) play an important role in modern health industry. AAs’ residues are frequently found in the structures of small-molecule modern pharmaceuticals, while peptidomimetics and peptide-based drugs are entirely derived from AAs. The goal of this review article is to highlight that, currently, AAs serve as key structural features in numerous successful pharmaceuticals; they are the so-called blockbuster drugs. In this work, we provide a detailed profile of 5 peptidomimetics and 4 peptide drugs. For each compound, we describe the spectrum of biological activity, medicinal chemistry discovery, and synthetic preparation.

2021 ◽  
Vol 21 (17) ◽  
pp. 1517-1518
Author(s):  
Dharmendra Kumar Yadav

The discovery and utilization of novel metabolites from natural sources are gaining momentum in the present era. The drug discovery programs have witnessed a remarkable shift from conventional medicines to exploiting natural products and their “value addition”, for treating lifethreatening diseases. The global outbreak of life-threatening diseases namely Ebola, SARS,including infections of the bloodstream (bacteremia), heart valves (endocarditis), lungs (pneumonia), and brain (meningitis) and AIDS calls for a more targeted approach to effectively combat the emerging diseases. In the present scenario, natural products and their extracts are being explored extensively for the treatment of various life threatening diseases. In this thematic issue, several review articles contributed by the scientist and researchers in the different areas of medicinal chemistry, synthetic chemistry, new emerging multi-drug targets were collected. This issue begins with a review article on the “Chemistry and Pharmacology of Natural Catechins from Camellia sinensis as anti-MRSA agents” by Gaur et al. and focuses on the spread of MRSA strains is of great concern because of limited treatment options for staphylococcal infections, since these strains are resistant to the entire class of β-lactam antibiotics. In addition, MRSA exhibits resistance to other classes of antimicrobial agents such as fluoroquinolones, cephalosporins, aminoglycosides, macrolide and even glycopeptides (vancomycin and teicoplanine), leading to the emergence of resistant strains such as glycopeptide intermediate (GISA) and resistant strain (GRSA) of S. aureus. In this review, chemical constituents responsible for the anti-MRSA activity of tea are explored [1]. The next article of this issue is a review article on the “Recent Advancements in the Synthesis and Chemistry of Benzofused Nitrogen- and Oxygen-based Bioactive Heterocycles” by Sharma et al. which focuses on medicinal importance of these bioactive benzo-fused heterocycles; special attention has been given to their synthesis as well as medicinal/pharmaceutical properties in detail [2]. “Trends in pharmaceutical design of Endophytes as anti-infective,” by Tiwari et al., is the third article in this issue. The review focused on the meta-analysis of bioactive metabolite production from endophytes, extensively discussing the bioprospection of natural products for pharmaceutical applications. In light of the emerging importance of endophytes as antiinfective agents, an exploration of the pharmaceutical design of novel chemical entities and analogues has enabled efficient and cost-effective drug discovery programs. However, bottlenecks in endophytic biology and research requires a better understanding of endophytic dynamics and mechanism of bioactive metabolite production towards a sustainable drug discovery program [3]. The last article of this issue is also research article on “Recent development of tetrahydro-quinoline/isoquinoline based compounds as anticancer agents” by Yadav et al. The article reported the synthesis of potent tetrahydroquinoline/isoquinoline molecules of the last 10 years with their anticancer properties in various cancer cell lines and stated their half-maximal inhibitory concentration (IC50). In addition, we also considered the discussion of molecular docking and structural activity relationship wherever provided to understand the possible mode of activity an target involved and structural features responsible for the better activity, so the reader can directly find detail for designing new anticancer agents. [4]. Finally I would like to thank all authors who contributed to this issue, titled “Recent advances on small molecule medicinal chemistry to treat human diseases”.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5886
Author(s):  
Pedro M. O. Gomes ◽  
Pedro M. S. Ouro ◽  
Artur M. S. Silva ◽  
Vera L. M. Silva

The pyrazole nucleus and its reduced forms, pyrazolines and pyrazolidine, are privileged scaffolds in medicinal chemistry due to their remarkable biological activities. A huge number of pyrazole derivatives have been studied and reported over time. This review article gives an overview of pyrazole derivatives that contain a styryl (2-arylvinyl) group linked in different positions of the pyrazole backbone. Although there are studies on the synthesis of styrylpyrazoles dating back to the 1970s and even earlier, this type of compound has rarely been studied. This timely review intends to summarize the properties, biological activity, methods of synthesis and transformation of styrylpyrazoles; thus, highlighting the interest and huge potential for application of this kind of compound.


2019 ◽  
Author(s):  
Victor Bloemendal ◽  
Floris P. J. T. Rutjes ◽  
Thomas J. Boltje ◽  
Daan Sondag ◽  
Hidde Elferink ◽  
...  

<p>In this manuscript we describe a modular pathway to synthesize biologically relevant (–)-<i>trans</i>-Δ<sup>8</sup>-THC derivatives, which can be used to modulate the pharmacologically important CB<sub>1</sub> and CB<sub>2</sub> receptors. This pathway involves a one-pot Friedel-Crafts alkylation/cyclization protocol, followed by Suzuki-Miyaura cross-coupling reactions and gives rise to a series of new Δ<sup>8</sup>-THC derivatives. In addition, we demonstrate using extensive NMR evidence that similar halide-substituted Friedel-Crafts alkylation/cyclization products in previous articles were wrongly assigned as the para-isomers, which also has consequence for the assignment of the subsequent cross-coupled products and interpretation of their biological activity. </p> <p>Considering the importance of the availability of THC derivatives in medicinal chemistry research and the fact that previously synthesized compounds were wrongly assigned, we feel this research is describing a straightforward pathway into new cannabinoids.</p>


2020 ◽  
Vol 20 (5) ◽  
pp. 342-368 ◽  
Author(s):  
Juliana de Oliveira Carneiro Brum ◽  
Tanos Celmar Costa França ◽  
Steven R. LaPlante ◽  
José Daniel Figueroa Villar

Hydrazones and their derivatives are very important compounds in medicinal chemistry due to their reported biological activity for the treatment of several diseases, like Alzheimer’s, cancer, inflammation, and leishmaniasis. However, most of the investigations on hydrazones available in literature today are directed to the synthesis of these molecules with little discussion available on their biological activities. With the purpose of bringing lights into this issue, we performed a revision of the literature and wrote this review based on some of the most current research reports of hydrazones and derivatives, making it clear that the synthesis of these molecules can lead to new drug prototypes. Our goal is to encourage more studies focused on the synthesis and evaluation of new hydrazones, as a contribution to the development of potential new drugs for the treatment of various diseases.


1988 ◽  
Vol 53 (11) ◽  
pp. 2914-2919 ◽  
Author(s):  
Pierrette Maes ◽  
Annie Ricouart ◽  
Emmanuel Escher ◽  
André Tartar ◽  
Christian Sergheraert

Analogs of angiotensin II in which phenylalanine in position 8 was replaced with cymantrenylalanine or with its triphenylphosphine photosubstitution product were synthesized by the solid-phase method. On rabbit aorta strips, these peptides were found to be pure antagonists of angiotensin II. Their relative affinities are higher than most other analogs substituted in position 8 with bulky amino-acids.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 471
Author(s):  
Eleonora Tosi ◽  
Renata Marcia de Figueiredo ◽  
Jean-Marc Campagne

The crucial role played by compounds bearing amide functions, not only in biological processes but also in several fields of chemistry, life polymers and material sciences, has brought about many significant discoveries and innovative approaches for their chemical synthesis. Indeed, a plethora of strategies has been developed to reach such moieties. Amides within chiral molecules are often associated with biological activity especially in life sciences and medicinal chemistry. In most of these cases, their synthesis requires extensive rethinking methodologies. In the very last years (2019–2020), enantioselective C-H functionalization has appeared as a straightforward alternative to reach chiral amides. Therein, an overview on these transformations within this timeframe is going to be given.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1486
Author(s):  
Eugene B. Caldona ◽  
Ernesto I. Borrego ◽  
Ketki E. Shelar ◽  
Karl M. Mukeba ◽  
Dennis W. Smith

Many desirable characteristics of polymers arise from the method of polymerization and structural features of their repeat units, which typically are responsible for the polymer’s performance at the cost of processability. While linear alternatives are popular, polymers composed of cyclic repeat units across their backbones have generally been shown to exhibit higher optical transparency, lower water absorption, and higher glass transition temperatures. These specifically include polymers built with either substituted alicyclic structures or aromatic rings, or both. In this review article, we highlight two useful ring-forming polymer groups, perfluorocyclobutyl (PFCB) aryl ether polymers and ortho-diynylarene- (ODA) based thermosets, both demonstrating outstanding thermal stability, chemical resistance, mechanical integrity, and improved processability. Different synthetic routes (with emphasis on ring-forming polymerization) and properties for these polymers are discussed, followed by their relevant applications in a wide range of aspects.


2021 ◽  
Vol 14 (4) ◽  
pp. 103037
Author(s):  
Yingying Xu ◽  
Ziwen Zhang ◽  
Jingbo Shi ◽  
Xinhua Liu ◽  
Wenjian Tang

Sign in / Sign up

Export Citation Format

Share Document