Recent Advances on Synthesis of 1,4-Benzoxazines and its Derivatives

2021 ◽  
Vol 25 ◽  
Author(s):  
Wei Liang ◽  
Li-Jing Min ◽  
Liang Han ◽  
Xing-Hai Liu

: 1,4-benzoxazine compounds are an important class of heterocyclic compounds. Ever since 1,4-benzoxazine was discovered in 1959, it has attracted chemists due to its unique physiological activities, and their synthesis and application have been studied. However, the traditional synthesis methods of 1,4-benzoxazines have some drawbacks, such as complicated steps, harsh reaction conditions and low yield. Therefore, it is still a significant direction to develop new and efficient synthesis methods. In this paper, the synthesis methods and reaction mechanisms of these compounds are reviewed, and the application prospect of 1,4- benzoxazine and its derivatives as a dominant active structure in the future is discussed.

2020 ◽  
Vol 8 (40) ◽  
pp. 20897-20924 ◽  
Author(s):  
Xue Yang ◽  
Suyuan Zhang ◽  
Peixian Li ◽  
Shuiying Gao ◽  
Rong Cao

In this review, we focus on the most recent advances made in visible-light-driven selective organic oxidation transformations and highlighted their reaction mechanisms. Moreover, we discuss the future development trends, challenges, and prospective outlook in detail.


2020 ◽  
Vol 5 (11) ◽  
Author(s):  
Ierasia Triandafillidi ◽  
Errika Voutyritsa ◽  
Christoforos G. Kokotos

AbstractDuring the last 20 years, Organocatalysis has become one of the major fields of Catalysis. Herein, we provide a recent overview on reactions where the use of amino acids and peptides as the organocatalysts was employed. All aspects regarding aldol reactions, Michael reactions, epoxidation, Henry reactions and many others that are crucial for the reaction conditions and reaction mechanisms are discussed.


2019 ◽  
Vol 16 (5) ◽  
pp. 671-708 ◽  
Author(s):  
Duc Dau Xuan

Background: Quinoline-containing compounds present in both natural and synthetic products are an important class of heterocyclic compounds. Many of the substituted quinolines have been used in various areas including medicine as drugs. Compounds with quinoline skeleton possess a wide range of bioactivities such as antimalarial, anti-bacterial, anthelmintic, anticonvulsant, antiviral, anti-inflammatory, and analgesic activity. Due to such a wide range of applicability, the synthesis of quinoline derivatives has attracted a lot of attention of chemists to develop effective methods. Many known methods have been expanded and improved. Furthermore, various new methods for quinoline synthesis have been established. This review will focus on considerable studies on the synthesis of quinolines date which back to 2014. Objective: In this review, we discussed recent achievements on the synthesis of quinoline compounds. Some classical methods have been modified and improved, while other new methods have been developed. A vast variety of catalysts were used for these transformations. In some studies, quinoline synthesis reaction mechanisms were also displayed. Conclusion: Many methods for the synthesis of substituted quinoline rings have been developed recently. Over the past five years, the majority of those reported have been based on cycloisomerization and cyclization processes. Undoubtedly, more imaginative approaches to quinoline synthesis will appear in the literature in the near future. The application of known methods to natural product synthesis is probably the next challenge in the field.


2020 ◽  
Vol 44 (9-10) ◽  
pp. 521-523
Author(s):  
Shao-Feng Pi ◽  
Yue-Meng Guo ◽  
Zheng-Rui Zhou ◽  
Han-zhou Sun ◽  
Bing Yi

A practical method is developed for the synthesis of oxazolidinone derivatives, an important class of heterocyclic compounds. The effect of bases and solvents on this cyclization reaction is discussed and a simple new base–solvent system (triethylamine in toluene) is found to be the most effective. The reaction conditions developed here are mild and no by-products are observed. Moreover, using optimized conditions, a number of differently substituted propargylic alcohols are cyclized to the corresponding N-substituted-4-methylene-oxazolidinones in yields of up to 99%.


2019 ◽  
Vol 16 (6) ◽  
pp. 602-608 ◽  
Author(s):  
Ligia S. da Silveira Pinto ◽  
Thatyana R. Alves Vasconcelos ◽  
Marcus V.N. de Souza

The quinoline nucleus is a very important class of heterocyclic aromatic compounds present in several drugs on the market, with synthetic methodologies being necessary to prepare its nucleus and derivatives. Considering that fact, the aim of this review is to describe the development of eco-friendly methodologies for the synthesis of quinoline nucleus and its derivatives in the last five years. Thus, throughout the text are presented varios reagents and catalysts used in the synthesis of quinoline nucleus, the reaction conditions, the advantages of the described methodologies, along with the reaction scheme and some reaction mechanisms.


2001 ◽  
Vol 6 (3) ◽  
pp. 172-176 ◽  
Author(s):  
Lawrence A. Pervin

David Magnusson has been the most articulate spokesperson for a holistic, systems approach to personality. This paper considers three concepts relevant to a dynamic systems approach to personality: dynamics, systems, and levels. Some of the history of a dynamic view is traced, leading to an emphasis on the need for stressing the interplay among goals. Concepts such as multidetermination, equipotentiality, and equifinality are shown to be important aspects of a systems approach. Finally, attention is drawn to the question of levels of description, analysis, and explanation in a theory of personality. The importance of the issue is emphasized in relation to recent advances in our understanding of biological processes. Integrating such advances into a theory of personality while avoiding the danger of reductionism is a challenge for the future.


Author(s):  
Shukla PK ◽  
Singh MP ◽  
Patel R

Indole and its derivatives have engaged a unique place in the chemistry of nitrogen heterocyclic compounds. The recognition of the plant growthhormone, heteroauxin, the significant amino acids, tryptamine & tryptophan and anti-inflammatory drug, indomethacine are the imperativederivatives of indole which have added stimulus to this review work. Isatin (1H-indole-2,3-dione), an indole derivative of plant origin. Althoughit is a naturally occurring compound, but was synthesized by Erdmann and Laurent in 1840 before it was found in nature. Isatin is a versatileprecursor for many biologically active molecules and its diversified nature makes it a versatile substrate for further modifications. It is concernedin many pharmacological activities like anti-malarial, antiviral, anti-allergic, antimicrobial etc; isatin and its derivatives have been also found todemonstrate promising outcomes against various cancer cell lines. This review provides a brief overview on the recent advances and futureperspectives on chemistry and biological aspects of isatin and its derivatives reported in the recent past.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mohsen A.-M. Gomaa ◽  
Huda A. Ali

Background : The reactivity of 4-(dicyanomethylene)-3-methyl-l-phenyl-2-pyrazoline-5-one DCNP 1 and its derivatives makes it valuable as a building block for the synthesis of heterocyclic compounds like pyrazolo-imidazoles, - thiazoles, spiropyridines, spiropyrroles, spiropyrans and others. As a number of publications have reported on the reactivity of DCNP and its derivatives, we compiled some features of this interesting molecule. Objective: This article aims to review the preparation of DCNP, its reactivity and application in heterocyclic and dyes synthesis. Conclusion: In this review we have provided an overview of recent progress in the chemistry of DCNP and its significance in synthesis of various classes of heterocyclic compounds and dyes. The unique reactivity of DCNP offers unprecedentedly mild reaction conditions for the generation of versatile cynomethylene dyes from a wide range of precursors including amines, α-aminocarboxylic acids, their esters, phenols, malononitriles and azacrown ethers. We anticipate that more innovative transformations involving DCNP will continue to emerge in the near future.


2020 ◽  
Vol 16 (4) ◽  
pp. 454-486 ◽  
Author(s):  
Smita Verma ◽  
Vishnuvardh Ravichandiran ◽  
Nihar Ranjan ◽  
Swaran J.S. Flora

Nitrogen-containing heterocycles are one of the most common structural motifs in approximately 80% of the marketed drugs. Of these, benzimidazoles analogues are known to elicit a wide spectrum of pharmaceutical activities such as anticancer, antibacterial, antiparasitic, antiviral, antifungal as well as chemosensor effect. Based on the benzimidazole core fused heterocyclic compounds, crescent-shaped bisbenzimidazoles were developed which provided an early breakthrough in the sequence-specific DNA recognition. Over the years, a number of functional variations in the bisbenzimidazole core have led to the emergence of their unique properties and established them as versatile ligands against several classes of pathogens. The present review provides an overview of diverse pharmacological activities of the bisbenzimidazole analogues in the past decade with a brief account of its development through the years.


2017 ◽  
Vol 53 (44) ◽  
pp. 5935-5945 ◽  
Author(s):  
Liu-Zhu Yu ◽  
Kai Chen ◽  
Zi-Zhong Zhu ◽  
Min Shi

Classification of functionalized alkylidenecyclopropanes (FACPs) and recent chemical transformations for the synthesis of novel and useful polycyclic and heterocyclic compounds.


Sign in / Sign up

Export Citation Format

Share Document