Title: Weighted Gene Co-Expression Network Analysis Identifies Five Hub Genes Associated with Metastasis in Synovial Sarcoma

Author(s):  
Hongzeng Wu ◽  
Benzheng Zhang ◽  
Jiazheng Zhao ◽  
Yi Zhao ◽  
Xiaowei Ma ◽  
...  

Background: Synovial sarcoma (SS) refers to a malignant soft tissue sarcoma (STS) which often occurs in children and adults and has a poor prognosis in elderly patients. Patients with local lesions can be treated with extensive surgical resection combined with adjuvant or radiotherapy, whereas about half of the cases have recurrent diseases and metastatic lesions, and five-year survival ratio is assessed within the range of 27% - 55% only. Method: We downloaded a set of expression profile data (GSE40021) related to SS metastasis based on the Gene Expression Omnibus (GEO) database, and selected distinctly represented genes (DEGs) related to tumor metastasis. WGCNA was used to emphasize the DEGs related to tumor metastasis and obtain co-expression modules. Then, the module most related to SS metastasis was screened out. The genes enriched in this module were analyzed by Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway improvement analysis. Cytoscape software was used for constructing protein-protein interaction (PPI) networks, and hub genes were screened in Oncomine analysis. Result: We selected 514 DEGs, consisting of 210 up-regulated genes and 304 down-regulated genes. Through WGCAN, we got seven co-expression modules and the module most related to SS metastasis was the turquoise module, which contained 66 genes. Finally, we screened out five hub genes (HJURP, NCAPG, TPX2, CENPA, NDC80) through CytoHubba and Oncomine analysis. Conclusion: In this study, we screened five hub genes that may help in clinical diagnosis and serve as the latent purpose of SS treatment.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Weishuang Xue ◽  
Jinwei Li ◽  
Kailei Fu ◽  
Weiyu Teng

Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease that affects the quality of life of elderly individuals, while the pathogenesis of AD is still unclear. Based on the bioinformatics analysis of differentially expressed genes (DEGs) in peripheral blood samples, we investigated genes related to mild cognitive impairment (MCI), AD, and late-stage AD that might be used for predicting the conversions. Methods. We obtained the DEGs in MCI, AD, and advanced AD patients from the Gene Expression Omnibus (GEO) database. A Venn diagram was used to identify the intersecting genes. Gene Ontology (GO) and Kyoto Gene and Genomic Encyclopedia (KEGG) were used to analyze the functions and pathways of the intersecting genes. Protein-protein interaction (PPI) networks were constructed to visualize the network of the proteins coded by the related genes. Hub genes were selected based on the PPI network. Results. Bioinformatics analysis indicated that there were 61 DEGs in both the MCI and AD groups and 27 the same DEGs among the three groups. Using GO and KEGG analyses, we found that these genes were related to the function of mitochondria and ribosome. Hub genes were determined by bioinformatics software based on the PPI network. Conclusions. Mitochondrial and ribosomal dysfunction in peripheral blood may be early signs in AD patients and related to the disease progression. The identified hub genes may provide the possibility for predicting AD progression or be the possible targets for treatments.


2020 ◽  
Vol 77 (3) ◽  
pp. 1255-1265
Author(s):  
Hui Xu ◽  
Jianping Jia

Background: The pathogenesis of Alzheimer’s disease (AD) involves various immune-related phenomena; however, the mechanisms underlying these immune phenomena and the potential hub genes involved therein are unclear. An understanding of AD-related immune hub genes and regulatory mechanisms would help develop new immunotherapeutic targets. Objective: The aim of this study was to explore the hub genes and the mechanisms underlying the regulation of competitive endogenous RNA (ceRNA) in immune-related phenomena in AD pathogenesis. Methods: We used the GSE48350 data set from the Gene Expression Omnibus database and identified AD immune-related differentially expressed RNAs (DERNAs). We constructed protein–protein interaction (PPI) networks for differentially expressed mRNAs and determined the degree for screening hub genes. By determining Pearson’s correlation coefficient and using StarBase, DIANA-LncBase, and Human MicroRNA Disease Database (HMDD), the AD immune-related ceRNA network was generated. Furthermore, we assessed the upregulated and downregulated ceRNA subnetworks to identify key lncRNAs. Results: In total, 552 AD immune-related DERNAs were obtained. Twenty hub genes, including PIK3R1, B2M, HLA-DPB1, HLA-DQB1, PIK3CA, APP, CDC42, PPBP, C3AR1, HRAS, PTAFR, RAB37, FYN, PSMD1, ACTR10, HLA-E, ARRB2, GGH, ALDOA, and VAMP2 were identified on PPI network analysis. Furthermore, upon microRNAs (miRNAs) inhibition, we identified LINC00836 and DCTN1-AS1 as key lncRNAs regulating the aforementioned hub genes. Conclusion: AD-related immune hub genes include B2M, FYN, PIK3R1, and PIK3CA, and lncRNAs LINC00836 and DCTN1-AS1 potentially contribute to AD immune-related phenomena by regulating AD-related hub genes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Siwei Bi ◽  
Ruiqi Liu ◽  
Linfeng He ◽  
Jingyi Li ◽  
Jun Gu

Abstract Background Aneurysm is a severe and fatal disease. This study aims to comprehensively identify the highly conservative co-expression modules and hub genes in the abdominal aortic aneurysm (AAA), thoracic aortic aneurysm (TAA) and intracranial aneurysm (ICA) and facilitate the discovery of pathogenesis for aneurysm. Methods GSE57691, GSE122897, and GSE5180 microarray datasets were downloaded from the Gene Expression Omnibus database. We selected highly conservative modules using weighted gene co‑expression network analysis before performing the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway and Reactome enrichment analysis. The protein–protein interaction (PPI) network and the miRNA-hub genes network were constructed. Furtherly, we validated the preservation of hub genes in three other datasets. Results Two modules with 193 genes and 159 genes were identified as well preserved in AAA, TAA, and ICA. The enrichment analysis identified that these genes were involved in several biological processes such as positive regulation of cytosolic calcium ion concentration, hemostasis, and regulation of secretion by cells. Ten highly connected PPI networks were constructed, and 55 hub genes were identified. In the miRNA-hub genes network, CCR7 was the most connected gene, followed by TNF and CXCR4. The most connected miRNAs were hsa-mir-26b-5p and hsa-mir-335-5p. The hub gene module was proved to be preserved in all three datasets. Conclusions Our study highlighted and validated two highly conservative co-expression modules and miRNA-hub genes network in three kinds of aneurysms, which may promote understanding of the aneurysm and provide potential therapeutic targets and biomarkers of aneurysm.


2021 ◽  
Author(s):  
Siwei Su ◽  
Wenjun Jiang ◽  
Xiaoying Wang ◽  
Sen Du ◽  
Lu Zhou ◽  
...  

Abstract ObjectiveThis study aims to explore the key genes and investigated the different signaling pathways of rheumatoid arthritis (RA) between males and females.Data and MethodsThe gene expression data of GSE55457, GSE55584, and GSE12021 were obtained from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using R software. Then, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis of DEGs were conducted via Database for Annotation, Visualization, and Integrated Discovery (DAVID). The protein-protein interaction (PPI) networks of DEGs were constructed by Cytoscape 3.6.0. ResultsA total of 416 upregulated DEGs and 336 downregulated DEGs were identified in males, and 744 upregulated DEGs and 309 downregulated DEGs were identified in females.IL6, MYC, EGFR, FOS and JUN were considered as hub genes in RA pathogenesis in males, while IL6, ALB, PTPRC, CXCL8 and CCR5 were considered as hub genes in RA pathogenesis in females. ConclusionIdentified DEG may be involved in the different mechanisms of RA disease progression between males and females, and they are treated as prognostic markers or therapeutic targets for males and females. The pathogenesis mechanism of RA is sex-dependent.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bingchang Xin ◽  
Yuxiang Lin ◽  
He Tian ◽  
Jia Song ◽  
Liwei Zhang ◽  
...  

Inflammatory reaction of pulp tissue plays a role in the pathogen elimination and tissue repair. The evaluation of severity of pulpitis can serve an instructive function in therapeutic scheme. However, there are many limitations in the traditional evaluation methods for the severity of pulpitis. Based on the Gene Expression Omnibus (GEO) database, our study discovered 843 differentially expressed genes (DEGs) related to pulpitis. Afterwards, we constructed a protein-protein interaction (PPI) network of DEGs and used MCODE plugin to determine the key functional subset. Meanwhile, genes in the key functional subset were subjected to GO and KEGG enrichment analyses. The result showed that genes were mainly enriched in inflammatory reaction-related functions. Next, we screened out intersections of PPI network nodes and pulpitis-related genes. Then, 20 genes were obtained as seed genes. In the PPI network, 50 genes that had the highest correlation with seed genes were screened out using random walk with restart (RWR). Furthermore, 4 pulpitis-related hub genes were obtained from the intersection of the top 50 genes and genes in the key functional subset. Finally, GeneMANIA was utilized to predict genes coexpressed with hub genes, and expression levels of the 4 hub genes in normal and pulpitis groups were analyzed based on GEO data. The result demonstrated that the 4 hub genes were mainly coexpressed with chemokine-related genes and were remarkably upregulated in the pulpitis group. In short, we eventually determined 4 potential biomarkers of pulpitis.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 896-897
Author(s):  
W. Liu ◽  
X. Zhang

Background:Myositis, including dermatomyositis and polymyositis, is autoimmune disorders that is characterized by muscle degeneration in the proximal extremities, with the complications of weakness of muscles, interstitial lung disease and vascular lesions, even leading to death in an acute progressive process[1,2]. However, the molecular mechanisms of myositis are rarely understood.Objectives:Identify the candidate genes in myositis.Methods:Microarray datasets GSE128470, GSE48280 and GSE39454 were extracted from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) and function enrichment analyses were conducted. The protein-protein interaction network and the analyses of hub genes were performed with STRING and Cytoscape.Results:There were 98 DEGs, of which the function and pathways enrichment analyses showed defense response, immune response, response to virus, inflammatory response, response to wounding, cell adhesion, cell proliferation, cell death and macromolecule metabolic process. 20 hub genes were identified, of which 7 including IRF9 TRIM22 MX2 IFITM1 IFI6 IFI44 IFI44L had not been reported in the literature, related to the response to virus, immune response, transcription from RNA polymerase II promoter, cell apoptosis, cell death. The verification analysis about the 7 genes in GSE128314 showed significant differences in myositis.Conclusion:In conclusion, DEGs and hub genes identified in our study showed the potential molecular mechanisms in myositis, providing the helpful targets for diagnosis and clinical strategy of myositis.References:[1] Wu H, Geng D, Xu J. An approach to the development of interstitial lung disease in dermatomyositis: a study of 230 cases in China[J]. Journal of International Medical Research. 2013;41(2):493–501.[2] Fathi M, Dastmalchi M, Rasmussen E, Lundberg IE, Tornling G. Interstitial lung disease, a common manifestation of newly diagnosed polymyositis and dermatomyositis[J]. Annals of the Rheumatic Diseases. 2004;63(3):297–301.Figure 1.The protein-protein interaction network of 20 hub genesFigure 2.7 genes in GSE128314 showed significant differences in myositisAcknowledgments:The authors acknowledge the efforts of the Gene Expression Omnibus (GEO) database. The interpretation and reporting of these data are the sole responsibility of the authors.Disclosure of Interests:None declared


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yuting Xu ◽  
Chen Qiao ◽  
Siying He ◽  
Chen Lu ◽  
Shiqi Dong ◽  
...  

Purpose. The competing endogenous RNA (ceRNA) network regulatory has been investigated in the occurrence and development of many diseases. This research aimed at identifying the key RNAs of ceRNA network in pterygium and exploring the underlying molecular mechanism. Methods. Differentially expressed long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs were obtained from the Gene Expression Omnibus (GEO) database and analyzed with the R programming language. LncRNA and miRNA expressions were extracted and pooled by the GEO database and compared with those in published literature. The lncRNA-miRNA-mRNA network was constructed of selected lncRNAs, miRNAs, and mRNAs. Metascape was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses on mRNAs of the ceRNA network and to perform Protein-Protein Interaction (PPI) Network analysis on the String website to find candidate hub genes. The Comparative Toxicogenomic Database (CTD) was used to find hub genes closely related to pterygium. The differential expressions of hub genes were verified using the reverse transcription-real-time fluorescent quantitative PCR (RT-qPCR). Result. There were 8 lncRNAs, 12 miRNAs, and 94 mRNAs filtered to construct the primary ceRNA network. A key lncRNA LIN00472 ranking the top 1 node degree was selected to reconstruct the LIN00472 network. The GO and KEGG pathway enrichment showed the mRNAs in ceRNA networks mainly involved in homophilic cell adhesion via plasma membrane adhesion molecules, developmental growth, regulation of neuron projection development, cell maturation, synapse assembly, central nervous system neuron differentiation, and PID FOXM1 PATHWAY. According to the Protein-Protein Interaction Network (PPI) analysis on mRNAs in LINC00472 network, 10 candidate hub genes were identified according to node degree ranking. Using the CTD database, we identified 8 hub genes closely related to pterygium; RT-qPCR verified 6 of them were highly expressed in pterygium. Conclusion. Our research found LINC00472 might regulate 8 hub miRNAs (miR-29b-3p, miR-183-5p, miR-138-5p, miR-211-5p, miR-221-3p, miR-218-5p, miR-642a-5p, miR-5000-3p) and 6 hub genes (CDH2, MYC, CCNB1, RELN, ERBB4, RB1) in the ceRNA network through mainly PID FOXM1 PATHWAY and play an important role in the development of pterygium.


2020 ◽  
Vol 14 ◽  
Author(s):  
Xiuning Zhang ◽  
Hailei Yu ◽  
Rui Bai ◽  
Chunling Ma

Although numerous studies have confirmed that the mechanisms of opiate addiction include genetic and epigenetic aspects, the results of such studies are inconsistent. Here, we downloaded gene expression profiling information, GSE87823, from the Gene Expression Omnibus database. Samples from males between ages 19 and 35 were selected for analysis of differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analyses were used to analyze the pathways associated with the DEGs. We further constructed protein-protein interaction (PPI) networks using the STRING database and used 10 different calculation methods to validate the hub genes. Finally, we utilized the Basic Local Alignment Search Tool (BLAST) to identify the DEG with the highest sequence similarity in mouse and detected the change in expression of the hub genes in this animal model using RT-qPCR. We identified three key genes, ADCY9, PECAM1, and IL4. ADCY9 expression decreased in the nucleus accumbens of opioid-addicted mice compared with control mice, which was consistent with the change seen in humans. The importance and originality of this study are provided by two aspects. Firstly, we used a variety of calculation methods to obtain hub genes; secondly, we exploited homology analysis to solve the difficult challenge that addiction-related experiments cannot be carried out in patients or healthy individuals. In short, this study not only explores potential biomarkers and therapeutic targets of opioid addiction but also provides new ideas for subsequent research on opioid addiction.


2020 ◽  
Author(s):  
Qiangwei Chi ◽  
Shizuan Chen ◽  
Shaotang Li

Abstract Background Colon cancer is a common tumor of the digestive tract worldwide. Recent researches have revealed that colon cancer exhibits distinct differences in clinical and biological characteristics depending on the location of the tumor. However, the underlying genetic and molecular mechanism of the differences between right-sided colon cancer (RCC) and left-sided colon cancer (LCC) are not fully understood. This study aimed to identify molecular potential biomarkers and therapeutic targets for precise treatment of right-sided and left-sided colon cancer using bioinformatics analysis. Methods The gene microarray profile, named GSE44076, from the Gene Expression Omnibus (GEO) public database was downloaded and processed to then select differentially expressed genes (DEGs) on the base of two sample groups of RCC and LCC. Also, gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, protein–protein interaction (PPI) network construction, module analysis, validation of hub genes, and survival analysis. Results Finally, we obtained 2259 DEGs between RCC and LCC, 1300 of which were upregulated in RCC and 945 of which were upregulated in LCC. The results of GO and KEGG analysis of the DEGs indicated that the biological functions of DEGs in RCC and LCC were significantly different. CTLA4, IL10, IL2RB, IFNG, NCAM1, EGFR, MYC, SRC, CUL3, and NCBP2 were identified from the PPI networks as the hub genes of RCC and LCC. Among the hub genes, the log-rank tests for overall survival (OS) and disease free survival (DFS) were applied. Moreover, all hub genes, except CUL3, had differential expression levels of miRNA between tumor group and normal group. Conclusion These hub genes and pathways identified based on bioinformatics analysis might conduce to explain the differences between RCC and LCC, and most of the hub genes were specific to the malignant tissues. Notably, these hub genes, especially the genes associated with immunotherapy such as CTLA4, might be potential specific targets or prognostic markers for precise treatment of colon cancer.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Binbin Xie ◽  
Yiran Li ◽  
Rongjie Zhao ◽  
Yuzi Xu ◽  
Yuhui Wu ◽  
...  

Chemoresistance is a significant factor associated with poor outcomes of osteosarcoma patients. The present study aims to identify Chemoresistance-regulated gene signatures and microRNAs (miRNAs) in Gene Expression Omnibus (GEO) database. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) included positive regulation of transcription, DNA-templated, tryptophan metabolism, and the like. Then differentially expressed genes (DEGs) were uploaded to Search Tool for the Retrieval of Interacting Genes (STRING) to construct protein-protein interaction (PPI) networks, and 9 hub genes were screened, such as fucosyltransferase 3 (Lewis blood group) (FUT3) whose expression in chemoresistant samples was high, but with a better prognosis in osteosarcoma patients. Furthermore, the connection between DEGs and differentially expressed miRNAs (DEMs) was explored. GEO2R was utilized to screen out DEGs and DEMs. A total of 668 DEGs and 5 DEMs were extracted from GSE7437 and GSE30934 differentiating samples of poor and good chemotherapy reaction patients. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used to perform GO and KEGG pathway enrichment analysis to identify potential pathways and functional annotations linked with osteosarcoma chemoresistance. The present study may provide a deeper understanding about regulatory genes of osteosarcoma chemoresistance and identify potential therapeutic targets for osteosarcoma.


Sign in / Sign up

Export Citation Format

Share Document