Immune-Related Hub Genes and the Competitive Endogenous RNA Network in Alzheimer’s Disease

2020 ◽  
Vol 77 (3) ◽  
pp. 1255-1265
Author(s):  
Hui Xu ◽  
Jianping Jia

Background: The pathogenesis of Alzheimer’s disease (AD) involves various immune-related phenomena; however, the mechanisms underlying these immune phenomena and the potential hub genes involved therein are unclear. An understanding of AD-related immune hub genes and regulatory mechanisms would help develop new immunotherapeutic targets. Objective: The aim of this study was to explore the hub genes and the mechanisms underlying the regulation of competitive endogenous RNA (ceRNA) in immune-related phenomena in AD pathogenesis. Methods: We used the GSE48350 data set from the Gene Expression Omnibus database and identified AD immune-related differentially expressed RNAs (DERNAs). We constructed protein–protein interaction (PPI) networks for differentially expressed mRNAs and determined the degree for screening hub genes. By determining Pearson’s correlation coefficient and using StarBase, DIANA-LncBase, and Human MicroRNA Disease Database (HMDD), the AD immune-related ceRNA network was generated. Furthermore, we assessed the upregulated and downregulated ceRNA subnetworks to identify key lncRNAs. Results: In total, 552 AD immune-related DERNAs were obtained. Twenty hub genes, including PIK3R1, B2M, HLA-DPB1, HLA-DQB1, PIK3CA, APP, CDC42, PPBP, C3AR1, HRAS, PTAFR, RAB37, FYN, PSMD1, ACTR10, HLA-E, ARRB2, GGH, ALDOA, and VAMP2 were identified on PPI network analysis. Furthermore, upon microRNAs (miRNAs) inhibition, we identified LINC00836 and DCTN1-AS1 as key lncRNAs regulating the aforementioned hub genes. Conclusion: AD-related immune hub genes include B2M, FYN, PIK3R1, and PIK3CA, and lncRNAs LINC00836 and DCTN1-AS1 potentially contribute to AD immune-related phenomena by regulating AD-related hub genes.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Weishuang Xue ◽  
Jinwei Li ◽  
Kailei Fu ◽  
Weiyu Teng

Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease that affects the quality of life of elderly individuals, while the pathogenesis of AD is still unclear. Based on the bioinformatics analysis of differentially expressed genes (DEGs) in peripheral blood samples, we investigated genes related to mild cognitive impairment (MCI), AD, and late-stage AD that might be used for predicting the conversions. Methods. We obtained the DEGs in MCI, AD, and advanced AD patients from the Gene Expression Omnibus (GEO) database. A Venn diagram was used to identify the intersecting genes. Gene Ontology (GO) and Kyoto Gene and Genomic Encyclopedia (KEGG) were used to analyze the functions and pathways of the intersecting genes. Protein-protein interaction (PPI) networks were constructed to visualize the network of the proteins coded by the related genes. Hub genes were selected based on the PPI network. Results. Bioinformatics analysis indicated that there were 61 DEGs in both the MCI and AD groups and 27 the same DEGs among the three groups. Using GO and KEGG analyses, we found that these genes were related to the function of mitochondria and ribosome. Hub genes were determined by bioinformatics software based on the PPI network. Conclusions. Mitochondrial and ribosomal dysfunction in peripheral blood may be early signs in AD patients and related to the disease progression. The identified hub genes may provide the possibility for predicting AD progression or be the possible targets for treatments.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Binbin Xie ◽  
Yiran Li ◽  
Rongjie Zhao ◽  
Yuzi Xu ◽  
Yuhui Wu ◽  
...  

Chemoresistance is a significant factor associated with poor outcomes of osteosarcoma patients. The present study aims to identify Chemoresistance-regulated gene signatures and microRNAs (miRNAs) in Gene Expression Omnibus (GEO) database. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) included positive regulation of transcription, DNA-templated, tryptophan metabolism, and the like. Then differentially expressed genes (DEGs) were uploaded to Search Tool for the Retrieval of Interacting Genes (STRING) to construct protein-protein interaction (PPI) networks, and 9 hub genes were screened, such as fucosyltransferase 3 (Lewis blood group) (FUT3) whose expression in chemoresistant samples was high, but with a better prognosis in osteosarcoma patients. Furthermore, the connection between DEGs and differentially expressed miRNAs (DEMs) was explored. GEO2R was utilized to screen out DEGs and DEMs. A total of 668 DEGs and 5 DEMs were extracted from GSE7437 and GSE30934 differentiating samples of poor and good chemotherapy reaction patients. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used to perform GO and KEGG pathway enrichment analysis to identify potential pathways and functional annotations linked with osteosarcoma chemoresistance. The present study may provide a deeper understanding about regulatory genes of osteosarcoma chemoresistance and identify potential therapeutic targets for osteosarcoma.


Author(s):  
Hongzeng Wu ◽  
Benzheng Zhang ◽  
Jiazheng Zhao ◽  
Yi Zhao ◽  
Xiaowei Ma ◽  
...  

Background: Synovial sarcoma (SS) refers to a malignant soft tissue sarcoma (STS) which often occurs in children and adults and has a poor prognosis in elderly patients. Patients with local lesions can be treated with extensive surgical resection combined with adjuvant or radiotherapy, whereas about half of the cases have recurrent diseases and metastatic lesions, and five-year survival ratio is assessed within the range of 27% - 55% only. Method: We downloaded a set of expression profile data (GSE40021) related to SS metastasis based on the Gene Expression Omnibus (GEO) database, and selected distinctly represented genes (DEGs) related to tumor metastasis. WGCNA was used to emphasize the DEGs related to tumor metastasis and obtain co-expression modules. Then, the module most related to SS metastasis was screened out. The genes enriched in this module were analyzed by Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway improvement analysis. Cytoscape software was used for constructing protein-protein interaction (PPI) networks, and hub genes were screened in Oncomine analysis. Result: We selected 514 DEGs, consisting of 210 up-regulated genes and 304 down-regulated genes. Through WGCAN, we got seven co-expression modules and the module most related to SS metastasis was the turquoise module, which contained 66 genes. Finally, we screened out five hub genes (HJURP, NCAPG, TPX2, CENPA, NDC80) through CytoHubba and Oncomine analysis. Conclusion: In this study, we screened five hub genes that may help in clinical diagnosis and serve as the latent purpose of SS treatment.


Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Haoming Li ◽  
Linqing Zou ◽  
Jinhong Shi ◽  
Xiao Han

Abstract Background Alzheimer’s disease (AD) is a fatal neurodegenerative disorder, and the lesions originate in the entorhinal cortex (EC) and hippocampus (HIP) at the early stage of AD progression. Gaining insight into the molecular mechanisms underlying AD is critical for the diagnosis and treatment of this disorder. Recent discoveries have uncovered the essential roles of microRNAs (miRNAs) in aging and have identified the potential of miRNAs serving as biomarkers in AD diagnosis. Methods We sought to apply bioinformatics tools to investigate microarray profiles and characterize differentially expressed genes (DEGs) in both EC and HIP and identify specific candidate genes and pathways that might be implicated in AD for further analysis. Furthermore, we considered that DEGs might be dysregulated by miRNAs. Therefore, we investigated patients with AD and healthy controls by studying the gene profiling of their brain and blood samples to identify AD-related DEGs, differentially expressed miRNAs (DEmiRNAs), along with gene ontology (GO) analysis, KEGG pathway analysis, and construction of an AD-specific miRNA–mRNA interaction network. Results Our analysis identified 10 key hub genes in the EC and HIP of patients with AD, and these hub genes were focused on energy metabolism, suggesting that metabolic dyshomeostasis contributed to the progression of the early AD pathology. Moreover, after the construction of an miRNA–mRNA network, we identified 9 blood-related DEmiRNAs, which regulated 10 target genes in the KEGG pathway. Conclusions Our findings indicated these DEmiRNAs having the potential to act as diagnostic biomarkers at an early stage of AD.


2021 ◽  
pp. 1-26
Author(s):  
Sze Chung Yuen ◽  
Simon Ming-Yuen Lee ◽  
Siu-wai Leung

Background: Neuronal cell cycle re-entry (CCR) is a mechanism, along with amyloid-β (Aβ) oligomers and hyperphosphorylated tau proteins, contributing to toxicity in Alzheimer’s disease (AD). Objective: This study aimed to examine the putative factors in CCR based on evidence corroboration by combining meta-analysis and co-expression analysis of omic data. Methods: The differentially expressed genes (DEGs) and CCR-related modules were obtained through the differential analysis and co-expression of transcriptomic data, respectively. Differentially expressed microRNAs (DEmiRNAs) were extracted from the differential miRNA expression studies. The dysregulations of DEGs and DEmiRNAs as binary outcomes were independently analyzed by meta-analysis based on a random-effects model. The CCR-related modules were mapped to human protein-protein interaction databases to construct a network. The importance score of each node within the network was determined by the PageRank algorithm, and nodes that fit the pre-defined criteria were treated as putative CCR-related factors. Results: The meta-analysis identified 18,261 DEGs and 36 DEmiRNAs, including genes in the ubiquitination proteasome system, mitochondrial homeostasis, and CCR, and miRNAs associated with AD pathologies. The co-expression analysis identified 156 CCR-related modules to construct a protein-protein interaction network. Five genes, UBC, ESR1, EGFR, CUL3, and KRAS, were selected as putative CCR-related factors. Their functions suggested that the combined effects of cellular dyshomeostasis and receptors mediating Aβ toxicity from impaired ubiquitination proteasome system are involved in CCR. Conclusion: This study identified five genes as putative factors and revealed the significance of cellular dyshomeostasis in the CCR of AD.


2018 ◽  
Vol 9 (1) ◽  
pp. 78
Author(s):  
Liqun Wang ◽  
Hongjia Qian ◽  
Liqun Wang

T0901317, a live X receptor agonist, can reduce amyloid β generation in vitro and in a mouse Alzheimer’s disease (AD) model. To investigate the global molecular effects of T0901317 in mouse hippocampus, we downloaded public GSE31624 generated from the hippocampus of wild-type mice, Tg2576 mice and T0901317-treated Tg2576 mice. Differentially-expressed genes (DEGs) were identified on LIMMA of R software. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment were analyzed through DAVID. Protein- protein interaction and hub genes were obtained based on STRING and Cytoscape. Nine downregulated and 68 upregulated DEGs in T0901317-treated Tg2576 were identified in comparison with untreated Tg2576 mice. Annotation analyses showed these DEGs correlated with transport (BP), membrane (CC) and binding (MF) terms and the dopaminergic synapse pathway. Protein-protein interaction network was built to find out some hub genes by maximal clique centrality. Discs large homolog 4 (Dlg4), the most outstanding gene, was associated with cognition improvement in aged AD mice. T0901317 may impact the development by regulating the Dlg4 expression. In conclusion, we investigated effects of T0901317 therapy on gene expression profiles in the hippocampus of Tg2576 mice and found Dlg4 may serve as putative therapeutics target for AD treatment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Siwei Bi ◽  
Ruiqi Liu ◽  
Linfeng He ◽  
Jingyi Li ◽  
Jun Gu

Abstract Background Aneurysm is a severe and fatal disease. This study aims to comprehensively identify the highly conservative co-expression modules and hub genes in the abdominal aortic aneurysm (AAA), thoracic aortic aneurysm (TAA) and intracranial aneurysm (ICA) and facilitate the discovery of pathogenesis for aneurysm. Methods GSE57691, GSE122897, and GSE5180 microarray datasets were downloaded from the Gene Expression Omnibus database. We selected highly conservative modules using weighted gene co‑expression network analysis before performing the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway and Reactome enrichment analysis. The protein–protein interaction (PPI) network and the miRNA-hub genes network were constructed. Furtherly, we validated the preservation of hub genes in three other datasets. Results Two modules with 193 genes and 159 genes were identified as well preserved in AAA, TAA, and ICA. The enrichment analysis identified that these genes were involved in several biological processes such as positive regulation of cytosolic calcium ion concentration, hemostasis, and regulation of secretion by cells. Ten highly connected PPI networks were constructed, and 55 hub genes were identified. In the miRNA-hub genes network, CCR7 was the most connected gene, followed by TNF and CXCR4. The most connected miRNAs were hsa-mir-26b-5p and hsa-mir-335-5p. The hub gene module was proved to be preserved in all three datasets. Conclusions Our study highlighted and validated two highly conservative co-expression modules and miRNA-hub genes network in three kinds of aneurysms, which may promote understanding of the aneurysm and provide potential therapeutic targets and biomarkers of aneurysm.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Binfeng Liu ◽  
Ang Li ◽  
Hongbo Wang ◽  
Jialin Wang ◽  
Gongwei Zhai ◽  
...  

The Corneal wound healing results in the formation of opaque corneal scar. In fact, millions of people around the world suffer from corneal scars, leading to loss of vision. This study aimed to identify the key changes of gene expression in the formation of opaque corneal scar and provided potential biomarker candidates for clinical treatment and drug target discovery. We downloaded Gene expression dataset GSE6676 from NCBI-GEO, and analyzed the Differentially Expressed Genes (DEGs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analyses, and protein-protein interaction (PPI) network. A total of 1377 differentially expressed genes were identified and the result of Functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) identification and protein-protein interaction (PPI) networks were performed. In total, 7 hub genes IL6 (interleukin-6), MMP9 (matrix metallopeptidase 9), CXCL10 (C-X-C motif chemokine ligand 10), MAPK8 (mitogen-activated protein kinase 8), TLR4 (toll-like receptor 4), HGF (hepatocyte growth factor), EDN1 (endothelin 1) were selected. In conclusion, the DEGS, Hub genes and signal pathways identified in this study can help us understand the molecular mechanism of corneal scar formation and provide candidate targets for the diagnosis and treatment of corneal scar.


2021 ◽  
Author(s):  
Wei Zhang ◽  
Jianping WU ◽  
Jinyun Dong ◽  
Wenwen LI ◽  
Xinjie Wang ◽  
...  

Abstract Background: Atherosclerosis (AS) is a common atherosclerotic vascular disease, and is one of the important factors leading to cardiovascular and cerebrovascular diseases.So far, the specific etiology and pathogenesis of AS have not been clarified, and further research is needed.Methods: Bioinformatics methods were used to analyze the data set of GSE57691 and GSE137578 in normal and atherosclerotic arterial endothelial cells from Gene Expression Omnibus (GEO).Results: There are a total of 300 differentially expressed genes (DEGs) in the GSE57691 and GSE137578 datasets, which are mainly enriched in the focal adhesion signaling pathway (adj P<0.05).We identified 10 hub genes (ACTG2, CAV1, CALD1, CDC42, CCT2, CCT3, VCL, PPARG, POLR2F and TPM3) in the protein-protein interaction (PPI) network, of which 3 (CAV1, CDC42 and VCL) Significantly enriched in the adhesion signaling pathway.In addition, a search in the BIOGPS database found that CAV1 and VCL are highly expressed in coronary arteries.Conclusions: In conclusion, bioinformatics technology has proved to be useful for screening and identifying novel biomarkers of diseases.300 DEGs and 10 hub genes were significantly enriched in atherosclerotic aortic endothelial cells, especially CAV1 and VCL genes.


2020 ◽  
Author(s):  
Jiayao Zhu ◽  
Yan Zhang ◽  
Jingjing Lu ◽  
Le Wang ◽  
Xiaoren Zhu ◽  
...  

Abstract Background: lung adenocarcinoma is the main subtype of lung cancer and the most fatal malignant disease in the world. However, the pathogenesis of lung adenocarcinoma has not been fully elucidated.Methods: Three LUAD-associated datesets (GSE118370, GSE43767 and GSE74190) were downloaded from the Gene Expression Omnibus (GEO) datebase and the differentially expressed miRNAs (DEMs) and genes (DEGs) were screened by GEO2R. The prediction of target gene of differentially expressed miRNA were used miRWALK. Metascape was used to enrich the overlapped genes of DEGs and target genes. Then, the protein-protein interaction(PPI) and DEMs-DEGs regulatory network were created via String datebase and Cytoscape. Finally, overall survival analysis was established via the Kaplan–Meier curve and look for the possible prognostic biomarkers.Result: In this study, 433 differential genes were identified. There were 267 genes overlapped with the target gene of Dems, and eight hub genes (CDH1, CDH5, CAV1, MMP9, PECAM1, CD24, ENG, MME) were screened out. There were 85 different miRNAs in total, among which 16 miRNA target genes intersect with DEGs, 12 miRNAs with the highest interaction were screened out, and survival analysis of miRNA and hub genes was carried out.Conclusion: we found that miRNA-940, miRNA-125a-3p, miRNA-140-3p, miRNA-542-5p, CDH1, CDH5, CAV1, MMP9, PECAM1 may be related to the development of LUAD.


Sign in / Sign up

Export Citation Format

Share Document