scholarly journals Differential Expression of mRNAs in Peripheral Blood Related to Prodrome and Progression of Alzheimer’s Disease

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Weishuang Xue ◽  
Jinwei Li ◽  
Kailei Fu ◽  
Weiyu Teng

Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease that affects the quality of life of elderly individuals, while the pathogenesis of AD is still unclear. Based on the bioinformatics analysis of differentially expressed genes (DEGs) in peripheral blood samples, we investigated genes related to mild cognitive impairment (MCI), AD, and late-stage AD that might be used for predicting the conversions. Methods. We obtained the DEGs in MCI, AD, and advanced AD patients from the Gene Expression Omnibus (GEO) database. A Venn diagram was used to identify the intersecting genes. Gene Ontology (GO) and Kyoto Gene and Genomic Encyclopedia (KEGG) were used to analyze the functions and pathways of the intersecting genes. Protein-protein interaction (PPI) networks were constructed to visualize the network of the proteins coded by the related genes. Hub genes were selected based on the PPI network. Results. Bioinformatics analysis indicated that there were 61 DEGs in both the MCI and AD groups and 27 the same DEGs among the three groups. Using GO and KEGG analyses, we found that these genes were related to the function of mitochondria and ribosome. Hub genes were determined by bioinformatics software based on the PPI network. Conclusions. Mitochondrial and ribosomal dysfunction in peripheral blood may be early signs in AD patients and related to the disease progression. The identified hub genes may provide the possibility for predicting AD progression or be the possible targets for treatments.

2020 ◽  
Vol 77 (3) ◽  
pp. 1255-1265
Author(s):  
Hui Xu ◽  
Jianping Jia

Background: The pathogenesis of Alzheimer’s disease (AD) involves various immune-related phenomena; however, the mechanisms underlying these immune phenomena and the potential hub genes involved therein are unclear. An understanding of AD-related immune hub genes and regulatory mechanisms would help develop new immunotherapeutic targets. Objective: The aim of this study was to explore the hub genes and the mechanisms underlying the regulation of competitive endogenous RNA (ceRNA) in immune-related phenomena in AD pathogenesis. Methods: We used the GSE48350 data set from the Gene Expression Omnibus database and identified AD immune-related differentially expressed RNAs (DERNAs). We constructed protein–protein interaction (PPI) networks for differentially expressed mRNAs and determined the degree for screening hub genes. By determining Pearson’s correlation coefficient and using StarBase, DIANA-LncBase, and Human MicroRNA Disease Database (HMDD), the AD immune-related ceRNA network was generated. Furthermore, we assessed the upregulated and downregulated ceRNA subnetworks to identify key lncRNAs. Results: In total, 552 AD immune-related DERNAs were obtained. Twenty hub genes, including PIK3R1, B2M, HLA-DPB1, HLA-DQB1, PIK3CA, APP, CDC42, PPBP, C3AR1, HRAS, PTAFR, RAB37, FYN, PSMD1, ACTR10, HLA-E, ARRB2, GGH, ALDOA, and VAMP2 were identified on PPI network analysis. Furthermore, upon microRNAs (miRNAs) inhibition, we identified LINC00836 and DCTN1-AS1 as key lncRNAs regulating the aforementioned hub genes. Conclusion: AD-related immune hub genes include B2M, FYN, PIK3R1, and PIK3CA, and lncRNAs LINC00836 and DCTN1-AS1 potentially contribute to AD immune-related phenomena by regulating AD-related hub genes.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Guowei Ma ◽  
Mingyan Liu ◽  
Ke Du ◽  
Xin Zhong ◽  
Shiqiang Gong ◽  
...  

Background. Early diagnosis of Alzheimer’s disease (AD) is an urgent point for AD prevention and treatment. The biomarkers of AD still remain indefinite. Based on the bioinformatics analysis of mRNA differential expressions in the brain tissues and the peripheral blood samples of Alzheimer’s disease (AD) patients, we investigated the target mRNAs that could be used as an AD biomarker and developed a new effective, practical clinical examination program. Methods. We compared the AD peripheral blood mononuclear cells (PBMCs) expression dataset (GEO accession GSE4226 and GSE18309) with AD brain tissue expression datasets (GEO accessions GSE1297 and GSE5281) from GEO in the present study. The GEO gene database was used to download the appropriate gene expression profiles to analyze the differential mRNA expressions between brain tissue and blood of AD patients and normal elderly. The Venn diagram was used to screen out the differential expression of mRNAs between the brain tissue and blood. The protein-protein interaction network map (PPI) was used to view the correlation between the possible genes. GO (gene ontology) and KEGG (Kyoto Gene and Genomic Encyclopedia) were used for gene enrichment analysis to determine the major affected genes and the function or pathway. Results. Bioinformatics analysis revealed that there were differentially expressed genes in peripheral blood and hippocampus of AD patients. There were 4958 differential mRNAs in GSE18309, 577 differential mRNAs in GSE4226 in AD PBMCs sample, 7464 differential mRNAs in GSE5281, and 317 differential mRNAs in GSE129 in AD brain tissues, when comparing between AD patients and healthy elderly. Two mRNAs of RAB7A and ITGB1 coexpressed in hippocampus and peripheral blood were screened. Furthermore, functions of differential genes were enriched by the PPI network map, GO, and KEGG analysis, and finally the chemotaxis, adhesion, and inflammatory reactions were found out, respectively. Conclusions. ITGB1 and RAB7A mRNA expressions were both changed in hippocampus and PBMCs, highly suggested being used as an AD biomarker with AD. Also, according to the results of this analysis, it is indicated that we can test the blood routine of the elderly for 2-3 years at a frequency of 6 months or one year. When a patient continuously detects the inflammatory manifestations, it is indicated as a potentially high-risk AD patient for AD prevention.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Huiwen Gui ◽  
Qi Gong ◽  
Jun Jiang ◽  
Mei Liu ◽  
Huanyin Li

Purpose. Alzheimer’s disease (AD) is considered to be the most common neurodegenerative disease and also one of the major fatal diseases affecting the elderly, thus bringing a huge burden to society. Therefore, identifying AD-related hub genes is extremely important for developing novel strategies against AD. Materials and Methods. Here, we extracted the gene expression profile GSE63061 from the National Center for Biotechnology Information (NCBI) GEO database. Once the unverified gene chip was removed, we standardized the microarray data after quality control. We utilized the Limma software package to screen the differentially expressed genes (DEGs). We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DEGs. Subsequently, we constructed a protein-protein interaction (PPI) network using the STRING database. Result. We screened 2169 DEGs, comprising 1313 DEGs with upregulation and 856 DEGs with downregulation. Functional enrichment analysis showed that the response of immune, the degranulation of neutrophils, lysosome, and the differentiation of osteoclast were greatly enriched in DEGs with upregulation; peptide biosynthetic process, translation, ribosome, and oxidative phosphorylation were dramatically enriched in DEGs with downregulation. 379 nodes and 1149 PPI edges were demonstrated in the PPI network constructed by upregulated DEGs; 202 nodes and 1963 PPI edges were shown in the PPI network constructed by downregulated DEGs. Four hub genes, including GAPDH, RHOA, RPS29, and RPS27A, were identified to be the newly produced candidates involved in AD pathology. Conclusion. GAPDH, RHOA, RPS29, and RPS27A are expected to be key candidates for AD progression. The results of this study can provide comprehensive insight into understanding AD’s pathogenesis and potential new therapeutic targets.


2021 ◽  
Author(s):  
Xin Wang ◽  
Wenfang Dong ◽  
Huan Wang ◽  
Jianjun You ◽  
Ruobing Zheng ◽  
...  

Abstract Objective The aim of this study is to discover the adipocyte genes and pathways involved in rosacea using bioinformatics analysis.Methods The GSE65914 gene expression profile was obtained. The GEO2R tool was used to screen out differentially expressed genes (DEGs). It was further analyzed with Gene Ontology (GO) to explore functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) to explore cell signaling pathways. Protein-protein interaction (PPI) networks among the DEGs were found by STRING databases and visualized in Cytoscape software. The related transcription factors regulatory network of the DEGs were also constructed.Results A total of 254 DEGs, including 72 up-regulated genes and 182 down-regulated genes, were obtained in rosacea samples. The biological functions of DEGs are mainly involved in the inflammatory response and chemokine activity. A PPI network consisting of 217 nodes and 710 edges was constructed using STRING, and ten hub genes were identified with Cytoscape software. Some transcriptional factors were also found to interact with these hub DEGs.Conclusion In this study, we obtained ten hub genes, including CXCL8, CCR5, CXCR4, CXCL10, MMP9, CD2, CCL19, CXCL9, CCL5, CD3D, which play an essential role in the pathology of rosacea, and these genes may provide a basis for the screening of treatment biomarkers for rosacea in the future.


2021 ◽  
Author(s):  
Zhengye Jiang ◽  
Yanxi Shi ◽  
Wenpeng Zhao ◽  
Bingchang Zhang ◽  
Yuanyuan Xie ◽  
...  

Abstract Background: Although chronic periodontitis has been confirmed to be related to Alzheimer’s disease, the pathogenesis between the two is unclear. Herein, we analyzed and screened out the prospective molecular marker.Methods: To explore the candidate genes, as well as signaling cascades involved in Alzheimer’s disease and mild cognitive impairment (MCI) related to chronic periodontitis, we extracted the integrated differentially expressed genes (DEGs) from the intersection of genes from the Gene Expression Omnibus (GEO) cohorts and text mining, followed by enrichment of the matching cell signal cascade through DAVID analysis. Moreover, the MCODE of Cytoscape software was employed to uncover the protein-protein interaction (PPI) network and the matching hub gene.Results: A total of 305 and 100 integrated human DEGs in AD and MCI group associated with chronic periodontitis were uncovered, respectively, that met the criteria of |log2 changes| ≥2, adjusted P <0.01. After PPI network construction, the top five hub genes associated with AD were extracted, including IL6, VEGFA, AKT1, MAPK3, and ALB, whereas those associated with MCI were EGFR, IL10, IGF1, BMP2, and LDLR. Conclusions: The establishment of the above-mentioned candidate key genes, as well as the enriched signaling cascades provides promising molecular marker for chronic periodontitis-related cognitive decline, especially AD, which may help the diagnosis and treatment of AD patients in the future.


2021 ◽  
Author(s):  
Zhengqiang He

Abstract More and more studies have suggested that type 2 diabetes mellitus (T2DM) was susceptible to trigger Alzheimer’s disease(AD), but the common underlying mechanism were unclear. We want to perform bioinformatic analysis with public databases. The T2DM dataset GSE95849 and AD dataset GSE97760 were selected from Gene Expression Omnibus (GEO) database. Then, we identified differentially expressed genes (DEGs) and the communal DEGs between the two diseases, which perform to the enrichment analysis, protein-protein interaction (PPI) network analysis, correlation analysis.We found 255 communal DEGs between T2DM and AD. They were enriched in negative regulation of actin filament depolymerization and regulation of actin filament depolymerization. Top 5 hub genes which identified from the PPI network were enriched in autophagy. The actin filament and autophagy may be the key association between the two diseases.


2020 ◽  
Author(s):  
Hao Li ◽  
Shimin Zong ◽  
Yingying Wen ◽  
Peiyu Du ◽  
Wenting Yu ◽  
...  

Abstract Purpose: The purpose of this study is to identify novel molecular markers and potential molecular targets for NPC based on bioinformatics analysis.Methods: We used bioinformatics to analyze one miRNA and two mRNA expression microarray datasets from the Gene Expression Omnibus database. The study included nasopharyngeal tissue samples from 57 patients with NPC and 32 patients without NPC. Fifty-one screened differentially expressed genes (DEGs) were evaluated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway enrichment analyses, and a protein-protein interaction (PPI) network was constructed. Results: The GO analysis results showed that the DEGs were mainly related to cell cycle checkpoints, cell division, and DNA synthesis during DNA repair. The KEGG analysis results suggested that the DEGs were mainly associated with extracellular matrix receptor interactions. In the PPI network, we identified RAD51AP1, MAD2L1, SPP1, CCNE2, CNTNAP2, and MELK as hub genes, clustered a key module, and identified eight key transcription factors: TFII-I, Pax-5, STAT4, GR-alpha, YY1, C/EBPβ, GRβ, and TFIID. Conclusion: The hub genes and signaling pathways identified above may play an important role in NPC development and provide ideas for the selection of valuable prognostic markers and the development of new molecular-targeted drugs.


2020 ◽  
Author(s):  
Qiangwei Chi ◽  
Shizuan Chen ◽  
Shaotang Li

Abstract Background Colon cancer is a common tumor of the digestive tract worldwide. Recent researches have revealed that colon cancer exhibits distinct differences in clinical and biological characteristics depending on the location of the tumor. However, the underlying genetic and molecular mechanism of the differences between right-sided colon cancer (RCC) and left-sided colon cancer (LCC) are not fully understood. This study aimed to identify molecular potential biomarkers and therapeutic targets for precise treatment of right-sided and left-sided colon cancer using bioinformatics analysis. Methods The gene microarray profile, named GSE44076, from the Gene Expression Omnibus (GEO) public database was downloaded and processed to then select differentially expressed genes (DEGs) on the base of two sample groups of RCC and LCC. Also, gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, protein–protein interaction (PPI) network construction, module analysis, validation of hub genes, and survival analysis. Results Finally, we obtained 2259 DEGs between RCC and LCC, 1300 of which were upregulated in RCC and 945 of which were upregulated in LCC. The results of GO and KEGG analysis of the DEGs indicated that the biological functions of DEGs in RCC and LCC were significantly different. CTLA4, IL10, IL2RB, IFNG, NCAM1, EGFR, MYC, SRC, CUL3, and NCBP2 were identified from the PPI networks as the hub genes of RCC and LCC. Among the hub genes, the log-rank tests for overall survival (OS) and disease free survival (DFS) were applied. Moreover, all hub genes, except CUL3, had differential expression levels of miRNA between tumor group and normal group. Conclusion These hub genes and pathways identified based on bioinformatics analysis might conduce to explain the differences between RCC and LCC, and most of the hub genes were specific to the malignant tissues. Notably, these hub genes, especially the genes associated with immunotherapy such as CTLA4, might be potential specific targets or prognostic markers for precise treatment of colon cancer.


2022 ◽  
Vol 12 (3) ◽  
pp. 523-532
Author(s):  
Xin Yan ◽  
Chunfeng Liang ◽  
Xinghuan Liang ◽  
Li Li ◽  
Zhenxing Huang ◽  
...  

<sec> <title>Objective:</title> This study aimed to identify the potential key genes associated with the progression and prognosis of adrenocortical carcinoma (ACC). </sec> <sec> <title>Methods:</title> Differentially expressed genes (DEGs) in ACC cells and normal adrenocortical cells were assessed by microarray from the Gene Expression Omnibus database. The biological functions of the classified DEGs were examined by Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses and a protein–protein interaction (PPI) network was mapped using Cytoscape software. MCODE software was also used for the module analysis and then 4 algorithms of cytohubba software were used to screen hub genes. The overall survival (OS) examination of the hub genes was then performed by the ualcan online tool. </sec> <sec> <title>Results:</title> Two GSEs (GSE12368, GSE33371) were downloaded from GEO including 18 and 43 cases, respectively. One hundred and sixty-nine DEGs were identified, including 57 upregulated genes and 112 downregulated genes. The Gene Ontology (GO) analyses showed that the upregulated genes were significantly enriched in the mitotic cytokines is, nucleus and ATP binding, while the downregulated genes were involved in the positive regulation of cardiac muscle contraction, extracellular space, and heparin-binding (P < 0.05). The Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) pathway examination showed significant pathways including the cell cycle and the complement and coagulation cascades. The protein– protein interaction (PPI) network consisted of 162 nodes and 847 edges, including mitotic nuclear division, cytoplasmic, protein kinase binding, and cell cycle. All 4 identified hub genes (FOXM1, UBE2C, KIF11, and NDC80) were associated with the prognosis of adrenocortical carcinoma (ACC) by survival analysis. </sec> <sec> <title>Conclusions:</title> The present study offered insights into the molecular mechanism of adrenocortical carcinoma (ACC) that may be beneficial in further analyses. </sec>


Author(s):  
Hongzeng Wu ◽  
Benzheng Zhang ◽  
Jiazheng Zhao ◽  
Yi Zhao ◽  
Xiaowei Ma ◽  
...  

Background: Synovial sarcoma (SS) refers to a malignant soft tissue sarcoma (STS) which often occurs in children and adults and has a poor prognosis in elderly patients. Patients with local lesions can be treated with extensive surgical resection combined with adjuvant or radiotherapy, whereas about half of the cases have recurrent diseases and metastatic lesions, and five-year survival ratio is assessed within the range of 27% - 55% only. Method: We downloaded a set of expression profile data (GSE40021) related to SS metastasis based on the Gene Expression Omnibus (GEO) database, and selected distinctly represented genes (DEGs) related to tumor metastasis. WGCNA was used to emphasize the DEGs related to tumor metastasis and obtain co-expression modules. Then, the module most related to SS metastasis was screened out. The genes enriched in this module were analyzed by Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway improvement analysis. Cytoscape software was used for constructing protein-protein interaction (PPI) networks, and hub genes were screened in Oncomine analysis. Result: We selected 514 DEGs, consisting of 210 up-regulated genes and 304 down-regulated genes. Through WGCAN, we got seven co-expression modules and the module most related to SS metastasis was the turquoise module, which contained 66 genes. Finally, we screened out five hub genes (HJURP, NCAPG, TPX2, CENPA, NDC80) through CytoHubba and Oncomine analysis. Conclusion: In this study, we screened five hub genes that may help in clinical diagnosis and serve as the latent purpose of SS treatment.


Sign in / Sign up

Export Citation Format

Share Document