Effectiveness of Bacteriophage Therapy in Field Conditions and Possible Future Applications

2020 ◽  
Vol 21 (5) ◽  
pp. 364-373
Author(s):  
Niran Adhikari ◽  
Krishna P. Acharya

Background: Bacteriophages are viruses, which are obligate parasites of specific bacteria for the completion of their lifecycle. Bacteriophages could be the possible alternative to antibioticresistant bacterial diseases. With this objective, extensive research in different fields is published which are discussed in this article. Results: After a review of bacteriophage therapy, bacteriophages were found to be effective against the multidrug-resistant bacteria individually or synergistically with antibiotics. They were found to be more effective, even better than the bacteria in the development of a vaccine. Conclusion: Thus, bacteriophage therapy offers promising alternatives in the treatment of antibioticresistant bacteria in different fields. However, their effectiveness is determined by a triad of bacteriophages (type & quantity), host (bacteria) and environmental factors.

Viruses ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 295 ◽  
Author(s):  
Sandra-Maria Wienhold ◽  
Jasmin Lienau ◽  
Martin Witzenrath

The emergence of multidrug-resistant bacteria constitutes a great challenge for modern medicine, recognized by leading medical experts and politicians worldwide. Rediscovery and implementation of bacteriophage therapy by Western medicine might be one solution to the problem of increasing antibiotic failure. In some Eastern European countries phage therapy is used for treating infectious diseases. However, while the European Medicines Agency (EMA) advised that the development of bacteriophage-based therapies should be expedited due to its significant potential, EMA emphasized that phages cannot be recommended for approval before efficacy and safety have been proven by appropriately designed preclinical and clinical trials. More evidence-based data is required, particularly in the areas of pharmacokinetics, repeat applications, immunological reactions to the application of phages as well as the interactions and effects on bacterial biofilms and organ-specific environments. In this brief review we summarize advantages and disadvantages of phage therapy and discuss challenges to the establishment of phage therapy as approved treatment for multidrug-resistant bacteria.


2016 ◽  
Vol 23 (8) ◽  
pp. 738-747 ◽  
Author(s):  
Esteban N. Lorenzón ◽  
Norival A. Santos-Filho ◽  
Matheus A. S. Ramos ◽  
Tais M. Bauab ◽  
Ilana L. B. C. Camargo ◽  
...  

2020 ◽  
Vol 41 (S1) ◽  
pp. s255-s255
Author(s):  
Ayodele T. Adesoji ◽  
Adeniyi A. Ogunjobi

Background: Multidrug-resistant bacteria can lead to treatment failure, resulting in infectious diseases being transferred through nonpotable water. Aminoglycosides are an important class of antibiotics that are abused in Nigeria. Few studies have investigated aminoglycoside-modifying genes (AMGs) that are likely responsible for resistance in Nigeria bacteria isolates. Therefore, we aimed to characterize AMGs from isolates in drinking water distribution systems (DWDS) in southwestern Nigeria. Methods: Multidrug-resistant bacteria (n = 181) that had been previously characterized by 16S rDNA sequencing and that were positive for resistance to at least 1 aminoglycoside antibiotic were selected from 6 treated and untreated water distribution systems. Strains were PCR genotyped for 3 AMGs: aph(3)c, ant(3)b and aph(6)-1dd. Results: Of 181 MDR bacteria tested, 69 (38.12%) were positive for at least 1 of the AMGs. The most common was ant(3)c (27.6%), followed by aph(3")c (18.23%). Both aph(3)c and ant(3")b were found in 7.73% of tested isolates, ant(3)b was most commonly found in Alcaligenes spp (50%). Furthermore, aph(3")c was most commonly detected in Proteus spp (50%). Other genera positive for AMGs included Acinetobacter, Aeromonas, Bordetella, Brevundimonas, Chromobacterium, Klebsiella, Leucobacter, Morganella, Pantoae, Proteus, Providencia, Psychrobacter, and Serratia. Conclusions: High occurrence of ant(3)c and aph(3)c among these bacteria call for urgent attention among public health workers because these genes can be easily disseminated to consumers if present on mobile genetic elements like plasmids, integrons, and transposons.Funding: NoneDisclosures: None


Sign in / Sign up

Export Citation Format

Share Document