Role of Amygdalin in Blocking DNA Replication in Breast Cancer In Vitro

Author(s):  
Sarah Albogami ◽  
Alaa Alnefaie

Background: Amygdalin has anticancer benefits because of its active component, hydrocyanic acid. However, the underlying molecular mechanism is unclear. Objective: This study aimed to investigate the molecular mechanism by which amygdalin exerts antiproliferative effects in the human Michigan Cancer Foundation-7 (MCF-7) breast cancer cell line. Methods: MCF-7 cells were exposed to amygdalin at a particular IC50 value for 24 and 48 hours and compared to nontreated cells. An Affymetrix whole-transcript expression array was used to analyze the expression of 32 genes related to DNA replication. Results: Among the 32 genes, amygdalin downregulated the expression of 16 genes and 19 genes by >1.5-fold at 24 and 48 hours, respectively. At 24 hours, the downregulated genes from the DNA polymerase α-primase complex were POLA1, POLA2, PRIM1, and PRIM2; DNA polymerase δ complex: POLD3; DNA polymerase complex: POLE4, minichromosome maintenance protein (MCM) complex (helicase): MCM2, MCM3, MCM4, MCM6, and MCM7; clamp and clamp loader: PCNA; nuclease: FEN1; and DNA ligase: LIG1. At 48 hours, the downregulated genes from the DNA polymerase α-primase complex were POLA1, POLA2, and PRIM1; DNA polymerase δ complex: POLD3; DNA polymerase complex: POLE and POLE2; MCM complex (helicase): MCM2, MCM3, MCM4, MCM5, MCM6, and MCM7; clamp and clamp loader: PCNA, RFC2, and RFC3; RNase H: RNASEH2A; nucleases: DNA2 and FEN1; and DNA ligase: LIG1. Conclusion: Amygdalin treatment caused downregulation of several genes that play critical roles in DNA replication in the MCF-7 cell line. Thus, it might be useful as an anticancer agent.

2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


2018 ◽  
Vol 18 (4) ◽  
pp. 573-582 ◽  
Author(s):  
Khaled R.A. Abdellatif ◽  
Mostafa M. Elbadawi ◽  
Mohammed T. Elsaady ◽  
Amer A. Abd El-Hafeez ◽  
Takashi Fujimura ◽  
...  

Background: Some 2-thioxoimidazolidinones have been reported as anti-prostate and anti-breast cancer agents through their inhibitory activity on topoisomerase I that is considered as a potential chemotherapeutic target. Objective: A new series of 3,5-disubstituted-2-thioxoimidazolidinone derivatives 10a-f and their S-methyl analogs 11a-f were designed, synthesized and evaluated for cytotoxicity against human prostate cancer cell line (PC-3), human breast cancer cell line (MCF-7) and non-cancerous human lung fibroblast cell line (WI-38). </P><P> Results and Method: While compounds 10a-f showed a broad range of activities against PC-3 and MCF-7 cell lines (IC50 = 34.0 – 186.9 and 24.6 – 147.5 µM respectively), the S-methyl analogs 11a-f showed (IC50 = 22.7 – 198.5 and 16.9 – 188.2 µM respectively) in comparison with 5-fluorouracil (IC50 = 60.7 and 40.7 µM respectively). 11c (IC50 = 22.7 and 29.2 µM) and 11f (IC50 = 28.7 and 16.9 µM) were the most potent among all compounds against both PC-3 and MCF-7 respectively with no cytotoxicity against WI-38. Conclusion: The newly synthesized compounds showed good activity against PC-3 and MCF-7 cell lines in comparison with 5-fluorouracil. Compounds 11c and 11f bound with human topoisomerase I similar to its known inhibitors and significantly inhibited its DNA relaxation activity in a dose dependent manner which may rationalize their molecular mechanism as cytotoxic agents.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 571
Author(s):  
Ahmed Gaber ◽  
Walaa F. Alsanie ◽  
Majid Alhomrani ◽  
Abdulhakeem S. Alamri ◽  
Ibrahim M. El-Deen ◽  
...  

This research aimed to produce new 1-[(aryl)(3-amino-5-oxopyrazolidin-4-ylidene) methyl]-2-oxo-1,2-dihydroquinoline-3-carboxylic acid derivatives and check their anticancer effect against the breast cancer MCF-7 cell line. The 2-oxo-1,2-dihydroquinoline-3-carboxylic acid (4) compound was obtained by hydrolyzing ethyl 2-oxo-1,2-dihydroquinoline-3-carboxylate (2) with thiourea and anhydrous potassium carbonate ethanol, which was then treated with ethyl 3-substituted 2-cyanoacrylates (6) in the presence of triethylamine in diethyl formamide to give 1-[2-(ethoxy)carbonyl-2-cyano-1-arylvinyl]-2-oxo-1,2-dihydroquinoline-3-carboxylic (7a,d). Cyclization of compound 7 with hydrazine hydrate ethanol inferred the association of 1-[(aryl)(3 amino-5-oxopyrazolidin-4-ylidene)methyl-2-oxo-1,2-dihydroquinol-3-carboxylates (8a,d). Spectroscopic and micro-analytical techniques such as IR, NMR, and elemental analysis were used to validate the structure of the synthesized organic compounds. The anticancer effects of the synthesized compounds 7a–d and 8a–d were tested by using the MTT assay on the MCF-7 cell line. When compared to the reference compound Dox, the compounds 7b, 7c, 8a, 8b, and 8c demonstrated strong anticancer activity against the MCF-7 cell line. The anticancer effects of the synthesized compounds 7a–d and 8a–d were tested against the MCF-7 cell line, using MTT assay. The compounds 7b, 7c, 8a, 8b, and 8c showed significant anticancer activity compared to the reference compound Dox against the MCF-7 cell line.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 412
Author(s):  
Mohammad M. Al-Sanea ◽  
Ahmad J. Obaidullah ◽  
Mohamed E. Shaker ◽  
Garri Chilingaryan ◽  
Mohammed M. Alanazi ◽  
...  

Background: Cyclin-dependent kinases (CDKs) regulate mammalian cell cycle progression and RNA transcription. Based on the structural analysis of previously reported CDK2 inhibitors, a new compound with 3-hydrazonoindolin-2-one scaffold (HI 5) was well designed, synthesized, and biologically evaluated as a promising anti-breast cancer hit compound. Methods: The potential anti-cancerous effect of HI 5 was evaluated using cytotoxicity assay, flow cytometric analysis of apoptosis and cell cycle distribution, ELISA immunoassay, in vitro CDK2/cyclin A2 activity, and molecular operating environment (MOE) virtual docking studies. Results: The results revealed that HI 5 exhibits pronounced CDK2 inhibitory activity and cytotoxicity in human breast cancer MCF-7 cell line. The cytotoxicity of HI 5 was found to be intrinsically mediated apoptosis, which in turn, is associated with low Bcl-2 expression and high activation of caspase 3 and p53. Besides, HI 5 blocked the proliferation of the MCF-7 cell line and arrested the cell cycle at the G2/M phase. The docking studies did not confirm which one of geometric isomers (syn and anti) is responsible for binding affinity and intrinsic activity of HI 5. However, the molecular dynamic studies have confirmed that the syn-isomer has more favorable binding interaction and thus is responsible for CDK2 inhibitory activity. Discussion: These findings displayed a substantial basis of synthesizing further derivatives based on the 3-hydrazonoindolin-2-one scaffold for favorable targeting of breast cancer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefania Nobili ◽  
Antonella Mannini ◽  
Astrid Parenti ◽  
Chiara Raggi ◽  
Andrea Lapucci ◽  
...  

AbstractInvasive ductal carcinoma (IDC) constitutes the most frequent malignant cancer endangering women’s health. In this study, a new spontaneously immortalized breast cancer cell line, DHSF-BR16 cells, was isolated from the primary IDC of a 74-years old female patient, treated with neoadjuvant chemotherapy and disease-free 5-years after adjuvant chemotherapy. Primary breast cancer tissue surgically removed was classified as ER−/PR−/HER2+, and the same phenotype was maintained by DHSF-BR16 cells. We examined DHSF-BR16 cell morphology and relevant biological and molecular markers, as well as their response to anticancer drugs commonly used for breast cancer treatment. MCF-7 cells were used for comparison purposes. The DHSF-BR16 cells showed the ability to form spheroids and migrate. Furthermore, DHSF-BR16 cells showed a mixed stemness phenotype (i.e. CD44+/CD24−/low), high levels of cytokeratin 7, moderate levels of cytokeratin 8 and 18, EpCAM and E-Cadh. Transcriptome analysis showed 2071 differentially expressed genes between DHSF-BR16 and MCF-7 cells (logFC > 2, p-adj < 0.01). Several genes were highly upregulated or downregulated in the new cell line (log2 scale fold change magnitude within − 9.6 to + 12.13). A spontaneous immortalization signature, mainly represented by extracellular exosomes-, plasma membrane- and endoplasmic reticulum membrane pathways (GO database) as well as by metabolic pathways (KEGG database) was observed in DHSF-BR16 cells. Also, these cells were more resistant to anthracyclines compared with MCF-7 cells. Overall, DHSF-BR16 cell line represents a relevant model useful to investigate cancer biology, to identify both novel prognostic and drug response predictive biomarkers as well as to assess new therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document