Targeting abnormal Nrf2/HO-1 signaling in amyotrophic lateral sclerosis: Current Insights on drug targets and influences on neurological disorders

2021 ◽  
Vol 21 ◽  
Author(s):  
Elizabeth Minj ◽  
Rajeshwar Kumar Yadav ◽  
Sidharth Mehan

: The nuclear erythroid 2-related-factor (Nrf2) transcription factor/hemoxygenase 1 (HO-1) is a key regulator of an important neuroprotection response by driving the interpretation of various cytoprotective gene to encode for antiinflammatory, anti-oxidant, and detoxifying proteins. Various studies investigated that the upregulation of Nrf2/HO-1 has become the potential therapeutic approach in amyotrophic lateral sclerosis (ALS). As amyotrophic lateral sclerosis is a motor neuron disease in which there is a progressive loss of upper motor neuron and lower motor neurons of the motor cortex, brain stem, and corticospinal tract. As a result of this upregulation of Nrf2/HO-1 indicates that in brain antioxidant capacity is reinforced. Further, this shows a cytoprotective effect against oxidative stress in amyotrophic lateral sclerosis. A study reported functions associated with the Nrf2/HO-1 in the neuronal cell, oligodendrocytes, microglia, and astrocytes. Although ALS's pathogenesis is not yet clear but compelling, the evidence shows any dysfunction in the brain such as mitochondrial dysfunction, protein aggregation, glial cell activation, excitotoxicity, and apoptosis gives ALS like symptoms. In this review, we have mainly focused on detailing the downregulation of Nrf2/HO-1, which may be the prime reason and may further serve as a pathological hallmark for ALS development. As surveyed, there are limited target-based interventions that only provide symptomatic relief but do not cure the disease completely. Dysregulation of the Nrf2/HO-1 signaling pathway leads to many physiological changes contributing to neurological conditions, including ALS. Based on the above view, we summarized the combined role of Nrf2/HO-1 signaling in ALS and explored potential therapeutic strategies for disease improvement through pathway modulators.

2020 ◽  
Vol 13 ◽  
Author(s):  
Mamtaj Alam ◽  
Rajeshwar Kumar Yadav ◽  
Elizabeth Minj ◽  
Aarti Tiwari ◽  
Sidharth Mehan

: Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease (MND) characterised by the death of upper and lower motor neurons (corticospinal tract) in the motor cortex, basal ganglia, brain stem, and spinal cord. The patient experiences the sign and symptoms between 55 to 75 years of age included impaired motor movement, difficulty in speaking and swallowing, grip loss, muscle atrophy, spasticity and sometimes associated with memory and cognitive impairments. Median survival is 3 to 5 years after diagnosis and 5 to 10% beyond 10 years of age. The limited intervention of pharmacologically active compounds that are used clinically is majorly associated with the narrow therapeutic index. Pre-clinically established experimental models where neurotoxin methyl mercury mimics the ALS like behavioural and neurochemical alterations in rodents associated with neuronal mitochondrial dysfunctions and downregulation of adenyl cyclase mediated cAMP/CREB is the main pathological hallmark for the progression of ALS in central as well in the peripheral nervous system. Despite the considerable investigation into neuroprotection, it still constrains treatment choices to strong care and organization of ALS complications. Therefore, current review specially targeted in the investigation of clinical and pre-clinical features available for ALS to understand the pathogenic mechanisms and to explore the pharmacological interventions associated with up-regulation of intracellular adenyl cyclase/cAMP/CREB and mitochondrial-ETC coenzyme-Q10 activation as a future drug target in the amelioration of ALS mediated motor neuronal dysfunctions.


Contact ◽  
2021 ◽  
Vol 4 ◽  
pp. 251525642110225
Author(s):  
Nica Borgese ◽  
Francesca Navone ◽  
Nobuyuki Nukina ◽  
Tomoyuki Yamanaka

Nearly twenty years ago a mutation in the VAPB gene, resulting in a proline to serine substitution (p.P56S), was identified as the cause of a rare, slowly progressing, familial form of the motor neuron degenerative disease Amyotrophic Lateral Sclerosis (ALS). Since then, progress in unravelling the mechanistic basis of this mutation has proceeded in parallel with research on the VAP proteins and on their role in establishing membrane contact sites between the ER and other organelles. Analysis of the literature on cellular and animal models reviewed here supports the conclusion that P56S-VAPB, which is aggregation-prone, non-functional and unstable, is expressed at levels that are insufficient to support toxic gain-of-function or dominant negative effects within motor neurons. Instead, insufficient levels of the product of the single wild-type allele appear to be required for pathological effects, and may be the main driver of the disease. In light of the multiple interactions of the VAP proteins, we address the consequences of specific VAPB depletion and highlight various affected processes that could contribute to motor neuron degeneration. In the future, distinction of specific roles of each of the two VAP paralogues should help to further elucidate the basis of p.P56S familial ALS, as well as of other more common forms of the disease.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1449
Author(s):  
Cyril Quessada ◽  
Alexandra Bouscary ◽  
Frédérique René ◽  
Cristiana Valle ◽  
Alberto Ferri ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive and selective loss of motor neurons, amyotrophy and skeletal muscle paralysis usually leading to death due to respiratory failure. While generally considered an intrinsic motor neuron disease, data obtained in recent years, including our own, suggest that motor neuron protection is not sufficient to counter the disease. The dismantling of the neuromuscular junction is closely linked to chronic energy deficit found throughout the body. Metabolic (hypermetabolism and dyslipidemia) and mitochondrial alterations described in patients and murine models of ALS are associated with the development and progression of disease pathology and they appear long before motor neurons die. It is clear that these metabolic changes participate in the pathology of the disease. In this review, we summarize these changes seen throughout the course of the disease, and the subsequent impact of glucose–fatty acid oxidation imbalance on disease progression. We also highlight studies that show that correcting this loss of metabolic flexibility should now be considered a major goal for the treatment of ALS.


2019 ◽  
Vol 27 (4) ◽  
pp. 1369-1382 ◽  
Author(s):  
Honglin Tan ◽  
Mina Chen ◽  
Dejiang Pang ◽  
Xiaoqiang Xia ◽  
Chongyangzi Du ◽  
...  

Abstract Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons. Improving neuronal survival in ALS remains a significant challenge. Previously, we identified Lanthionine synthetase C-like protein 1 (LanCL1) as a neuronal antioxidant defense gene, the genetic deletion of which causes apoptotic neurodegeneration in the brain. Here, we report in vivo data using the transgenic SOD1G93A mouse model of ALS indicating that CNS-specific expression of LanCL1 transgene extends lifespan, delays disease onset, decelerates symptomatic progression, and improves motor performance of SOD1G93A mice. Conversely, CNS-specific deletion of LanCL1 leads to neurodegenerative phenotypes, including motor neuron loss, neuroinflammation, and oxidative damage. Analysis reveals that LanCL1 is a positive regulator of AKT activity, and LanCL1 overexpression restores the impaired AKT activity in ALS model mice. These findings indicate that LanCL1 regulates neuronal survival through an alternative mechanism, and suggest a new therapeutic target in ALS.


2011 ◽  
Vol 3 (1) ◽  
pp. 4 ◽  
Author(s):  
Aline Furtado Bastos ◽  
Marco Orsini ◽  
Dionis Machado ◽  
Mariana Pimentel Mello ◽  
Sergio Nader ◽  
...  

The Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease in the adulthood, and it is characterized by rapid and progressive compromise of the upper and lower motor neurons. The majority of the cases of ALS are classified as sporadic and, until now, a specific cause for these cases still is unknown. To present the different hypotheses on the etiology of ALS. It was carried out a search in the databases: Bireme, Scielo and Pubmed, in the period of 1987 to 2011, using the following keywords: Amyotrophic lateral sclerosis, motor neuron disease, etiology, causes and epidemiology and its similar in Portuguese and Spanish. It did not have consensus as regards the etiology of ALS. Researches demonstrates evidences as regards intoxication by heavy metals, environmental and occupational causes, genetic mutations (superoxide dismutase 1), certain viral infections and the accomplishment of vigorous physical activity for the development of the disease. There is still no consensus regarding the involved factors in the etiology of ALS. In this way, new research about these etiologies are necessary, for a better approach of the patients, promoting preventive programs for the disease and improving the quality of life of the patients.


2016 ◽  
Vol 74 (10) ◽  
pp. 849-854
Author(s):  
Paulo Victor Sgobbi de Souza ◽  
Wladimir Bocca Vieira de Rezende Pinto ◽  
Flávio Moura Rezende Filho ◽  
Acary Souza Bulle Oliveira

ABSTRACT Motor neuron disease is one of the major groups of neurodegenerative diseases, mainly represented by amyotrophic lateral sclerosis. Despite wide genetic and biochemical data regarding its pathophysiological mechanisms, motor neuron disease develops under a complex network of mechanisms not restricted to the unique functions of the alpha motor neurons but which actually involve diverse functions of glial cell interaction. This review aims to expose some of the leading roles of glial cells in the physiological mechanisms of neuron-glial cell interactions and the mechanisms related to motor neuron survival linked to glial cell functions.


2018 ◽  
Author(s):  
Silas Maniatis ◽  
Tarmo Äijö ◽  
Sanja Vickovic ◽  
Catherine Braine ◽  
Kristy Kang ◽  
...  

AbstractParalysis occurring in amyotrophic lateral sclerosis (ALS) results from denervation of skeletal muscle as a consequence of motor neuron degeneration. Interactions between motor neurons and glia contribute to motor neuron loss, but the spatiotemporal ordering of molecular events that drive these processes in intact spinal tissue remains poorly understood. Here, we use spatial transcriptomics to obtain gene expression measurements of mouse spinal cords over the course of disease, as well as of postmortem tissue from ALS patients, to characterize the underlying molecular mechanisms in ALS. We identify novel pathway dynamics, regional differences between microglia and astrocyte populations at early time-points, and discern perturbations in several transcriptional pathways shared between murine models of ALS and human postmortem spinal cords.One Sentence SummaryAnalysis of the ALS spinal cord using Spatial Transcriptomics reveals spatiotemporal dynamics of disease driven gene regulation.


2020 ◽  
Vol 10 (3) ◽  
pp. 58 ◽  
Author(s):  
Owen Connolly ◽  
Laura Le Gall ◽  
Gavin McCluskey ◽  
Colette G Donaghy ◽  
William J Duddy ◽  
...  

Amyotrophic lateral sclerosis is a rare and fatal neurodegenerative disease characterised by progressive deterioration of upper and lower motor neurons that eventually culminates in severe muscle atrophy, respiratory failure and death. There is a concerning lack of understanding regarding the mechanisms that lead to the onset of ALS and as a result there are no reliable biomarkers that aid in the early detection of the disease nor is there an effective treatment. This review first considers the clinical phenotypes associated with ALS, and discusses the broad categorisation of ALS and ALS-mimic diseases into upper and lower motor neuron diseases, before focusing on the genetic aetiology of ALS and considering the potential relationship of mutations of different genes to variations in phenotype. For this purpose, a systematic review is conducted collating data from 107 original published clinical studies on monogenic forms of the disease, surveying the age and site of onset, disease duration and motor neuron involvement. The collected data highlight the complexity of the disease’s genotype–phenotype relationship, and thus the need for a nuanced approach to the development of clinical assays and therapeutics.


Science ◽  
2019 ◽  
Vol 364 (6435) ◽  
pp. 89-93 ◽  
Author(s):  
Silas Maniatis ◽  
Tarmo Äijö ◽  
Sanja Vickovic ◽  
Catherine Braine ◽  
Kristy Kang ◽  
...  

Paralysis occurring in amyotrophic lateral sclerosis (ALS) results from denervation of skeletal muscle as a consequence of motor neuron degeneration. Interactions between motor neurons and glia contribute to motor neuron loss, but the spatiotemporal ordering of molecular events that drive these processes in intact spinal tissue remains poorly understood. Here, we use spatial transcriptomics to obtain gene expression measurements of mouse spinal cords over the course of disease, as well as of postmortem tissue from ALS patients, to characterize the underlying molecular mechanisms in ALS. We identify pathway dynamics, distinguish regional differences between microglia and astrocyte populations at early time points, and discern perturbations in several transcriptional pathways shared between murine models of ALS and human postmortem spinal cords.


Sign in / Sign up

Export Citation Format

Share Document